Publications by authors named "Fedeli S"

In view of changing climatic conditions and disappearing natural resources such as fertile soil and water, exploring alternatives to today's industrial monocrop farming becomes essential. One promising farming practice is intercropping (IC), in which two or more crop species are grown together. Many experiments have shown that, under certain circumstances, IC can decrease soil erosion and fertilizer use, improve soil health and land management, while preserving crop production levels.

View Article and Find Full Text PDF

Synthetic polymer scaffolds can encapsulate transition metal catalysts (TMCs) to provide bioorthogonal nanocatalysts. These 'polyzymes' catalyze the generation of therapeutic agents without disrupting native biological processes. The design and modification of polymer scaffolds in these polyzymes can enhance the catalytic performance of TMCs in biological environments.

View Article and Find Full Text PDF

Bio-orthogonal chemistry provides a powerful tool for drug delivery systems due to its ability to generate therapeutic agents in situ, minimizing off-target effects. Bio-orthogonal transition metal catalysts (TMCs) with stimuli-responsive properties offer possibilities for controllable catalysis due to their spatial-, temporal-, and dosage-controllable properties. In this paper, we fabricated a stimuli-responsive bio-orthogonal catalysis system based on an enhanced green fluorescent protein (EGFP)-nanozyme (NZ) complex (EGFP-NZ).

View Article and Find Full Text PDF

Ligand dynamics plays a critical role in the chemical and biological properties of gold nanoparticles (AuNPs). In this study, ligands featuring hydrophobic alkanethiol interiors and hydrophilic shells were used to systematically examine the effects of ligand headgroups on the ligand dynamics. Solution nuclear magnetic resonance (NMR) spectroscopy provided quantitative insight into the monolayer ligand dynamics.

View Article and Find Full Text PDF

Macrophages are plastic cells of the immune system that can be broadly classified as having pro-inflammatory (M1-like) or anti-inflammatory (M2-like) phenotypes. M2-like macrophages are often associated with cancers and can promote cancer growth and create an immune-suppressive tumor microenvironment. Repolarizing macrophages from M2-like to M1-like phenotype provides a crucial strategy for anticancer immunotherapy.

View Article and Find Full Text PDF

Bioorthogonal catalysis mediated by transition metal catalysts (TMCs) provides controlled activation of prodrugs through chemical reactions that do not interfere with cellular bioprocesses. The direct use of 'naked' TMCs in biological environments can have issues of solubility, deactivation, and toxicity. Here, we demonstrate the design and application of a biodegradable nanoemulsion-based scaffold stabilized by a cationic polymer that encapsulates a palladium-based TMC, generating bioorthogonal nanocatalyst "polyzymes".

View Article and Find Full Text PDF

The rapid detection of proteins is very important in the early diagnosis of diseases. Gold nanoparticles (AuNPs) can be engineered to bind biomolecules efficiently and differentially. Cross-reactive sensor arrays have high sensitivity for sensing proteins using differential interactions between sensor elements and bioanalytes.

View Article and Find Full Text PDF

Background: Extracorporeal photopheresis (ECP) is frequently used to treat moderate-severe chronic graft versus host disease (cGVHD), however limited data exists describing ECP treatment effects on healthcare and societal costs. We aimed to characterize clinical and health economic outcomes and productivity loss in cGVHD patients exposed to ECP.

Methods: We identified 2708 patients aged ≥ 18 years with a record of allogeneic hematopoietic stem cell transplantation (HSCT) in the Swedish Patient Register between 2006 and 2020.

View Article and Find Full Text PDF

Bioorthogonal catalysis via transition metal catalysts (TMCs) enables the generation of therapeutics locally through chemical reactions not accessible by biological systems. This localization can enhance the efficacy of anticancer treatment while minimizing off-target effects. The encapsulation of TMCs into nanomaterials generates "nanozymes" to activate imaging and therapeutic agents.

View Article and Find Full Text PDF

Bioorthogonal activation of pro-dyes and prodrugs using transition-metal catalysts (TMCs) provides a promising strategy for imaging and therapeutic applications. TMCs can be loaded into polymeric nanoparticles through hydrophobic encapsulation to generate polymeric nanocatalysts with enhanced solubility and stability. However, biomedical use of these nanostructures faces challenges due to unwanted tissue accumulation of nonbiodegradable nanomaterials and cytotoxicity of heavy-metal catalysts.

View Article and Find Full Text PDF

Bioorthogonal transition metal catalysts (TMCs) transform therapeutically inactive molecules (pro-drugs) into active drug compounds. Inorganic nanoscaffolds protect and solubilize catalysts while offering a flexible design space for decoration with targeting elements and stimuli-responsive activity. These "drug factories" can activate pro-drugs in situ, localizing treatment to the disease site and minimizing off-target effects.

View Article and Find Full Text PDF

Current intracellular protein delivery strategies face the challenge of endosomal entrapment and consequent degradation of protein cargo. Methods to efficiently deliver proteins directly to the cytosol have the potential to overcome this hurdle. Here, we report the use of a straightforward approach of protein modification using citraconic anhydride to impart an overall negative charge on the proteins, enabling them to assemble with positively charged nano vectors.

View Article and Find Full Text PDF
Article Synopsis
  • Bioorthogonal chemistry enables nonbiogenic reactions in biological systems, allowing for targeted release of therapeutic agents.
  • By embedding bioorthogonal catalysts in polymeric nanoscaffolds, these catalysts can improve the effectiveness and activity of therapeutics.
  • The research focused on optimizing a gold(I)-based catalyst by adjusting its structure for better interaction with the polymer, which enhanced its performance in catalytic reactions.
View Article and Find Full Text PDF

Macrophages migrate to tumor sites by following chemoattractant gradients secreted by tumor cells, providing a truly active targeting strategy for cancer therapy. However, macrophage-based delivery faces challenges of cargo loading, control of release, and effects of the payload on the macrophage vehicle. We present a strategy that employs bioorthogonal "nanozymes" featuring transition metal catalysts (TMCs) to provide intracellular "factories" for the conversion of prodyes and prodrugs into imaging agents and chemotherapeutics.

View Article and Find Full Text PDF

Transition-metal catalysts (TMCs) effect bioorthogonal transformations that enable the generation of therapeutic agents , minimizing off-target effects. The encapsulation of insoluble TMCs into polymeric nanoparticles to generate "polyzymes" has vastly expanded their applicability in biological environments by enhancing catalyst solubility and stability. However, commonly used precipitation approaches provide limited encapsulation efficiency in polyzyme fabrication and result in a low catalytic activity.

View Article and Find Full Text PDF

Bioorthogonal catalysis using transition-metal catalysts (TMCs) provides a toolkit for the generation of imaging and therapeutic agents in biological environments. Integrating TMCs with nanomaterials mimics key properties of natural enzymes, providing bioorthogonal "nanozymes". ZnS nanoparticles provide a platform for bioorthogonal nanozymes using ruthenium catalysts embedded in self-assembled monolayers on the particle surface.

View Article and Find Full Text PDF

Wound biofilm infections caused by multidrug-resistant (MDR) bacteria constitute a major threat to public health; acquired resistance combined with resistance associated with the biofilm phenotype makes combatting these infections challenging. Biodegradable polymeric nanoemulsions that encapsulate two hydrophobic antimicrobial agents (eugenol and triclosan) (TE-BNEs) as a strategy to combat chronic wound infections are reported here. The cationic nanoemulsions efficiently penetrate and accumulate in biofilms, synergistically eradicating MDR bacterial biofilms, including persister cells.

View Article and Find Full Text PDF

Current strategies for the delivery of proteins into cells face general challenges of endosomal entrapment and concomitant degradation of protein cargo. Efficient delivery directly to the cytosol overcomes this obstacle: we report here the use of biotin-streptavidin tethering to provide a modular approach to the generation of nanovectors capable of a cytosolic delivery of biotinylated proteins. This strategy uses streptavidin to organize biotinylated protein and biotinylated oligo(glutamate) peptide into modular complexes that are then electrostatically self-assembled with a cationic guanidinium-functionalized polymer.

View Article and Find Full Text PDF

Bioorthogonal transformations are chemical reactions that use pathways which biological processes do not access. Bioorthogonal chemistry provides new approaches for imaging and therapeutic strategies, as well as tools for fundamental biology. Bioorthogonal catalysis enables the development of bioorthogonal "factories" for on-demand and generation of drugs and imaging tools.

View Article and Find Full Text PDF

Biofilm infections caused by multidrug-resistant (MDR) bacteria are an urgent global health threat. Incorporation of natural essential oils into biodegradable oil-in-water cross-linked polymeric nanoemulsions (X-NEs) provides effective eradication of MDR bacterial biofilms. The X-NE platform combines the degradability of functionalized poly(lactic acid) polymers with the antimicrobial activity of carvacrol (from oregano oil).

View Article and Find Full Text PDF

Background: The MILES and ELVIS studies showed that vinorelbine is one of the best options for elderly patients with advanced non-small-cell-lung cancer (NSCLC). Oral vinorelbine at standard schedule (60-80 mg/m/weekly) has good activity in terms of response rates and progression-free survival. In recent years, a metronomic schedule of oral vinorelbine (40-50 mg/m three times a week, continuously) has been studied in phase II trials, especially in unfit and elderly patients.

View Article and Find Full Text PDF

We demonstrate here the protection of biorthogonal transition metal catalysts (TMCs) in biological environments by using self-assembled monolayers on gold nanoparticles (AuNPs). Encapsulation of TMCs in this hydrophobic environment preserves catalytic activity in presence of pH conditions and complex biological media that would deactivate free catalyst. Significantly, the protection affords by these nanozymes extends to isolation of the catalyst active site, as demonstrated by the independence of rate over a wide pH range, in strong contrast to the behavior of the free catalyst.

View Article and Find Full Text PDF

Considering nanogels, we have focused our attention on hybrid nanosystems for drug delivery and biomedical purposes. The distinctive strength of these structures is the capability to join the properties of nanosystems with the polymeric structures, where versatility is strongly demanded for biomedical applications. Alongside with the therapeutic effect, a non-secondary requirement of the nanosystem is indeed its biocompatibility.

View Article and Find Full Text PDF

Background: The randomized phase 3 METEOR study confirmed a survival benefit of cabozantinib over everolimus in patients with metastatic renal-cell carcinoma (mRCC) with disease that progressed after treatment with at least one previous antiangiogenic inhibitor. The aim of this analysis was to evaluate the safety and activity of cabozantinib in an unselected population.

Methods: Data were collected across 24 Italian centers.

View Article and Find Full Text PDF

The progress of the chemistry of carbon nanotubes (CNT) and graphene derivatives [mainly graphene oxide (GO)] has produced a number of technologically advanced drug delivery systems (DDS) that have been used in the field of nanomedicine, mostly in studies related to oncology. However, such a demanding field of research requires continuous improvements in terms of efficiency, selectivity and versatility. The loading of two, or more, bioactive components on the same nanoparticle offers new possibilities for treating cancer, efficiently addressing issues related both to biodistribution and pharmacokinetics.

View Article and Find Full Text PDF