Publications by authors named "Fedeli J"

We demonstrate coherent supercontinuum generation spanning over an octave from a silicon germanium-on-silicon waveguide using ∼200 pulses at a wavelength of 4 µm. The waveguide is engineered to provide low all-normal dispersion in the TM polarization. We validate the coherence of the generated supercontinuum via simulations, with a high degree of coherence across the entire spectrum.

View Article and Find Full Text PDF

Thanks to their unique optical properties Ge-Sb-S-Se-Te amorphous chalcogenide materials and compounds offer tremendous opportunities of applications, in particular in near and mid-infrared range. This spectral range is for instance of high interest for photonics or optical sensors. Using co-sputtering technique of chalcogenide compound targets in a 200 mm industrial deposition tool, we show how by modifying the amorphous structure of GeSbSSeTe chalcogenide thin films one can significantly tailor their linear and nonlinear optical properties.

View Article and Find Full Text PDF

The manufacturing cost of quantum cascade lasers is still a major bottleneck for the adoption of this technology for chemical sensing. The integration of Mid-Infrared sources on Si substrate based on CMOS technology paves the way for high-volume low-cost fabrication. Furthermore, the use of Si-based fabrication platform opens the way to the co-integration of QCL Mid-InfraRed sources with SiGe-based waveguides, enabling realization of optical sensors fully integrated on planar substrate.

View Article and Find Full Text PDF

In this Letter, we demonstrate a new, to the best of our knowledge, kind of photonic waveguide, in which the light propagates in the overlap of sub-wavelength patterned interdigitated combs. We present the fabrication and characterization of this waveguide, along with an adiabatic taper ensuring lossless transition with classical photonic waveguides. Finally, we explore some practical applications of this waveguide, as a bio-photonic sensor or as an optomechanical transduction scheme.

View Article and Find Full Text PDF

Germanium photodetectors are considered to be mature components in the silicon photonics device library. They are critical for applications in sensing, communications, or optical interconnects. In this work, we report on design, fabrication, and experimental demonstration of an integrated waveguide PIN photodiode architecture that calls upon lateral double Silicon/Germanium/Silicon (Si/Ge/Si) heterojunctions.

View Article and Find Full Text PDF

Subwavelength gratings (SWG) are photonic structures with a period small enough to suppress diffraction, thereby acting as artificial dielectric materials, also called all-dielectric metamaterials. This property has been exploited in many high-performance photonic integrated devices in the silicon-on-insulator (SOI) platform. While SWG waveguides are theoretically lossless, they may exhibit leakage penalty to the substrate due to a combination of reduced modal confinement and finite thickness of the buried oxide (BOX) layer.

View Article and Find Full Text PDF

We present the first experimental demonstration of a new fiber-chip grating coupler concept that exploits the blazing effect by interleaving the standard full (220 nm) and shallow etch (70 nm) trenches in a 220 nm thick silicon layer. The high directionality is obtained by controlling the separation between the deep and shallow trenches to achieve constructive interference in the upward direction and destructive interference toward the silicon substrate. Utilizing this concept, the grating directionality can be maximized independent of the bottom oxide thickness.

View Article and Find Full Text PDF

We propose compact DC and small-signal models for carrier-injection microring modulators that accurately describe the DC characteristics (resonance wavelength, quality factor, and extinction ratio) and the high frequency performance. The proposed theoretical models provide physical insights of the carrier-injection microring modulators with a variety of designs. The DC and small-signal models are implemented in Verilog-A for SPICE-compatible simulations.

View Article and Find Full Text PDF

Recent advances in silicon photonics have aided the development of on-chip communications. Power consumption, however, remains an issue in almost all integrated devices. Here, we report a 10 Gbit per second waveguide avalanche germanium photodiode under low reverse bias.

View Article and Find Full Text PDF

Optically induced thermal and free carrier nonlinearities in silicon micro-ring resonator influence their behavior. They can be either deleterious by making them instable and by driving their resonances out of the designed wavelengths, or enabler of different applications. Among the most interesting one, there are optical bistability and self induced oscillations.

View Article and Find Full Text PDF

We demonstrated 40 Gbit/s optical link by coupling a silicon (Si) optical modulator to a germanium (Ge) photo-detector from two separate photonic chips. The optical modulator was based on carrier depletion in a pn diode integrated in a 950-µm long Mach-Zehnder interferometer. The Ge photo-detector was a lateral pin diode butt coupled to a silicon waveguide.

View Article and Find Full Text PDF

Heterogeneously integrated III-V-on-silicon second-order distributed feedback lasers utilizing an ultra-thin DVS-BCB die-to-wafer bonding process are reported. A novel DFB laser design exploiting high confinement in the active waveguide is demonstrated. A 14 mW single-facet output power coupled to a silicon waveguide, 50 dB side-mode suppression ratio and continuous wave operation up to 60°C around 1550 nm is obtained.

View Article and Find Full Text PDF

We demonstrate high-speed silicon modulators based on carrier depletion in interleaved pn junctions fabricated on 300 mm-SOI wafers using CMOS foundry facilities. 950 µm-long Mach Zehnder (MZ) and ring resonator (RR) modulator with a 100 µm radius, were designed, fabricated and characterized. 40 Gbit/s data transmission has been demonstrated for both devices.

View Article and Find Full Text PDF

Compact multi-frequency lasers are realized by combining III-V based optical amplifiers with silicon waveguide optical demultiplexers using a heterogeneous integration process based on adhesive wafer bonding. Both devices using arrayed waveguide grating routers as well as devices using ring resonators as the demultiplexer showed lasing with threshold currents between 30 and 40 mA and output powers in the order of a few mW. Laser operation up to 60°C is demonstrated.

View Article and Find Full Text PDF

The nonlinear response of amorphous silicon waveguides is reported and compared to silicon-on-insulator (SOI) samples. The real part of the nonlinear coefficient γ is measured by four-wave-mixing and the imaginary part of γ is characterized by measuring the nonlinear loss at different peak powers. The combination of both results yields a two-photon-absorption figure of merit of 4.

View Article and Find Full Text PDF

A heterogeneously integrated III-V-on-silicon laser is reported, integrating a III-V gain section, a silicon ring resonator for wavelength selection and two silicon Bragg grating reflectors as back and front mirrors. Single wavelength operation with a side mode suppression ratio higher than 45 dB is obtained. An output power up to 10 mW at 20 °C and a thermo-optic wavelength tuning range of 8 nm are achieved.

View Article and Find Full Text PDF

Integrated optical devices based on coupled resonator optical waveguides (CROW) for reconfigurable band routing are explored. A reconfiguration principle based on two bus interferometric CROW resonant structures is proposed. This device extends the functionalities of simple add-drop filters, adding more switching features.

View Article and Find Full Text PDF

An integrated erbium-based light emitting diode has been realized in a waveguide configuration allowing 1.54 μm light signal routing in silicon photonic circuits. This injection device is based on an asymmetric horizontal slot waveguide where the active slot material is Er(3+) in SiO2 or Er(3+) in Si-rich oxide.

View Article and Find Full Text PDF

Electrically driven Er(3+) doped Si slot waveguides emitting at 1530 nm are demonstrated. Two different Er(3+) doped active layers were fabricated in the slot region: a pure SiO(2) and a Si-rich oxide. Pulsed polarization driving of the waveguides was used to characterize the time response of the electroluminescence (EL) and of the signal probe transmission in 1 mm long waveguides.

View Article and Find Full Text PDF

We propose and demonstrate asymmetric 10 Gbit/s upstream--100 Gbit/s downstream per wavelength colorless WDM/TDM PON using a novel hybrid-silicon chip integrating two tunable lasers. The first laser is directly modulated in burst mode for upstream transmission over up to 25 km of standard single mode fiber and error free transmission over 4 channels across the C-band is demonstrated. The second tunable laser is successfully used as local oscillator in a coherent receiver across the C-band simultaneously operating with the presence of 80 downstream co-channels.

View Article and Find Full Text PDF

The interferometric coupling of pairs of resonators in a resonator sequence generates coupled ring induced transparency (CRIT) resonances. These have quality factors an order of magnitude greater than those of single resonators. We show that it is possible to engineer CRIT resonances in tapered SCISSOR (Side Coupled Integrated Space Sequence of Resonator) to realize fast and efficient reconfigurable optical switches and routers handling several channels while keeping single channel addressing capabilities.

View Article and Find Full Text PDF

We present the characterization of the ultrafast nonlinear dynamics of a CMOS-compatible horizontal-slot waveguide with silicon nanocrystals. Results are compared to strip silicon waveguides, and modeled with nonlinear split-step calculations. The extracted parameters show that the slot waveguide has weaker carrier effects and better nonlinear figure-of-merit than the strip waveguides.

View Article and Find Full Text PDF

We demonstrate optically stable amorphous silicon nanowires with both high nonlinear figure of merit (FOM) of ~5 and high nonlinearity Re(γ) = 1200W(-1)m(-1). We observe no degradation in these parameters over the entire course of our experiments including systematic study under operation at 2 W coupled peak power (i.e.

View Article and Find Full Text PDF

In this Letter, we demonstrate a highly efficient, compact, high-contrast and low-loss silicon slow wave modulator based on a traveling-wave Mach-Zehnder interferometer with two 500 μm long slow wave phase shifters. 40  Gb/s operation with 6.6 dB extinction ratio at quadrature and with an on-chip insertion loss of only 6 dB is shown.

View Article and Find Full Text PDF

A novel ultracompact electro-optic phase modulator based on a single 9 μm-diameter III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic waveguide is presented. Modulation is enabled by effective index modification through carrier injection. Proof-of-concept implementation involving binary phase shift keying modulation format is assembled.

View Article and Find Full Text PDF