Publications by authors named "Feda Mohamed"

The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms.

View Article and Find Full Text PDF

Gaucher disease (GD) is mainly caused by glucocerebrosidase (GCase) enzyme deficiency due to genetic variations in the gene leading to the toxic accumulation of sphingolipids in various organs, which causes symptoms such as anemia, thrombocytopenia, hepatosplenomegaly, and neurological manifestations. GD is clinically classified into the non-neuronopathic type 1, and the acute and chronic neuronopathic forms, types 2 and 3, respectively. In addition to the current approved GD medications, the repurposing of Ambroxol (ABX) has emerged as a prospective enzyme enhancement therapy option showing its potential to enhance mutated GCase activity and reduce glucosylceramide accumulation in GD-affected tissues of different genotypes.

View Article and Find Full Text PDF

The main protease (M) enzyme has an imperative function in disease progression and the life cycle of the SARS-CoV-2 virus. Although the orally active drug nirmatrelvir (co-administered with ritonavir as paxlovid) has been approved for emergency use as the frontline antiviral agent, there are a number of limitations that necessitate the discovery of new drug scaffolds, such as poor pharmacokinetics and susceptibility to proteolytic degradation due to its peptidomimetic nature. This study utilized a novel virtual screening workflow that combines pharmacophore modelling, multiple-receptor covalent docking, and biological evaluation in order to find new M inhibitors.

View Article and Find Full Text PDF

Background: In metabolic stress, the cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) enzyme is involved in energy production through the gluconeogenesis pathway. PEPCK-C deficiency is a rare childhood-onset autosomal recessive metabolic disease caused by PCK1 genetic defects. Previous studies showed a broad clinical spectrum ranging from asymptomatic to recurrent hypoglycemia with/without lactic acidosis, encephalopathy, seizures, and liver failure.

View Article and Find Full Text PDF

With the potential for coronaviruses to re-emerge and trigger future pandemics, the urgent development of antiviral inhibitors against SARS-CoV-2 is essential. The M enzyme is crucial for disease progression and the virus's life cycle. It possesses allosteric sites that can hinder its catalytic activity, with some of these sites located at or near the dimerization interface.

View Article and Find Full Text PDF

Spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM) are linked to genetic variants since the first reported case in 2015. encodes for the neutral amino acid transporter ASCT1 which is involved in the transportation of serine between astrocytes and neurons. Although most of the reported cases are of Ashkenazi Jewish ancestry, SPATCCM has also been reported in Irish, Italian, Czech, Palestinian, and Pakistani ethnicities.

View Article and Find Full Text PDF

Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates.

View Article and Find Full Text PDF

The main protease enzyme (M) of SARS-CoV-2 is one of the most promising targets for COVID-19 treatment. Accordingly, in this work, a structure-based virtual screening of 3.8 million ligand libraries was carried out.

View Article and Find Full Text PDF
Article Synopsis
  • ACE2 is a crucial receptor involved in the entry of SARS-CoV-2 into human cells, and genetic variations in the ACE2 gene may influence COVID-19's clinical manifestations.
  • This study analyzed 28 specific missense variants of the ACE2 receptor to assess their impact on the protein's intracellular trafficking and localization, using both computational and experimental methods.
  • The results showed that none of the variants significantly affected ACE2 trafficking or localization to the plasma membrane, but further research is needed to explore their potential influence on viral susceptibility and disease severity.
View Article and Find Full Text PDF

Gaucher disease is caused by glucocerebroside accumulation in different tissues due to beta-glucocerebrosidase enzyme deficiency. Genetic defects in proteins involved in beta-glucocerebrosidase processing and activation may indirectly lead to Gaucher-like phenotypes in affected individuals. Saposin C, derived from the prosaposin precursor, is a crucial activator for beta-glucocerebrosidase, and its deficiency has been linked to Gaucher-like phenotypes in several clinical reports.

View Article and Find Full Text PDF