Publications by authors named "Febrian Tri Adhi Wibowo"

In conventional fullerene-based organic photovoltaics (OPVs), in which the excited electrons from the donor are transferred to the acceptor, the electron charge transfer state () that electrons pass through has a great influence on the device's performance. In a bulk-heterojunction (BHJ) system based on a low bandgap non-fullerene acceptor (NFA), however, a hole charge transfer state () from the acceptor to the donor has a greater influence on the device's performance. The accurate determination of is essential for achieving further enhancement in the performance of non-fullerene organic solar cells.

View Article and Find Full Text PDF

The power conversion efficiency (PCE) of polymer solar cells (PSCs) has recently reached >19% through the development of photoactive materials, particularly non-fullerene acceptors. Interfacial layers (ILs) have been another essential factor in optimizing device charge extraction. In this study, we propose a series of ILs, in which ionic iridium(III) (Ir(III)) complexes of different alkali metal cations (Li, Na, and K) enhance the charge collection efficiency between zinc oxide and active layers through an induced internal electric field.

View Article and Find Full Text PDF

A charge transport layer based on transition metal-oxides prepared by an anhydrous sol-gel method normally requires high-temperature annealing to achieve the desired quality. Although annealing is not a difficult process in the laboratory, it is definitely not a simple process in mass production, such as roll-to-roll, because of the inevitable long cooling step that follows. Therefore, the development of an annealing-free solution-processable metal-oxide is essential for the large-scale commercialization.

View Article and Find Full Text PDF

Porphyrin derivatives have recently emerged as hole transport layers (HTLs) because of their electron-rich characteristics. Although several successes with porphyrin-based HTLs have been recently reported, achieving excellent solar cell performance, the chances to improve this further by molecular engineering are still open. In this work, Zn porphyrin (P)-based HTLs were developed by conjugating fluorinated triphenylamine (FTPA) wings at the perimeter of the P core for low-temperature perovskite solar cells (L-PSCs).

View Article and Find Full Text PDF

Although the combination of wide band gap polymer donors and narrow band gap small-molecule acceptors achieved state-of-the-art performance as bulk heterojunction (BHJ) active layers for organic solar cells, there have been only several of the wide band gap polymers that actually realized high-efficiency devices over >10%. Herein, we developed high-efficiency, low-energy-loss fullerene-free organic solar cells using a weakly crystalline wide band gap polymer donor, PBDTTPD-HT, and a nonfullerene small-molecule acceptor, ITIC. The excessive intermolecular stacking of ITIC is efficiently suppressed by the miscibility with PBDTTPD-HT, which led to a well-balanced nanomorphology in the PBDTTPD-HT/ITIC BHJ active films.

View Article and Find Full Text PDF