Kirsten rat sarcoma virus (KRAS)-G12C inhibition causes remodeling of the lung tumor immune microenvironment and synergistic responses to anti-PD-1 treatment, but only in T cell infiltrated tumors. To investigate mechanisms that restrain combination immunotherapy sensitivity in immune-excluded tumors, we used imaging mass cytometry to explore cellular distribution in an immune-evasive KRAS mutant lung cancer model. Cellular spatial pattern characterization revealed a community where CD4 and CD8 T cells and dendritic cells were gathered, suggesting localized T cell activation.
View Article and Find Full Text PDFBackground: In non-small cell lung cancer (NSCLC), chemoradiotherapy (CRT) yields pathological complete response (pCR) rates of approximately 30%. We investigated using ipilimumab plus nivolumab (IPI-NIVO) with neoadjuvant CRT in resectable, and borderline resectable NSCLC.
Methods: This single-arm, phase-II trial enrolled operable T3-4N0-2 patients with NSCLC without oncogenic drivers.
The growing scale and dimensionality of multiplexed imaging require reproducible and comprehensive yet user-friendly computational pipelines. TRACERx-PHLEX performs deep learning-based cell segmentation (deep-imcyto), automated cell-type annotation (TYPEx) and interpretable spatial analysis (Spatial-PHLEX) as three independent but interoperable modules. PHLEX generates single-cell identities, cell densities within tissue compartments, marker positivity calls and spatial metrics such as cellular barrier scores, along with summary graphs and spatial visualisations.
View Article and Find Full Text PDFUnlabelled: Understanding the role of the tumor microenvironment (TME) in lung cancer is critical to improving patient outcomes. We identified four histology-independent archetype TMEs in treatment-naïve early-stage lung cancer using imaging mass cytometry in the TRACERx study (n = 81 patients/198 samples/2.3 million cells).
View Article and Find Full Text PDFA complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development. Here we propose that environmental particulate matter measuring ≤2.
View Article and Find Full Text PDFRecently developed KRAS inhibitory drugs are beneficial to lung cancer patients harboring KRAS mutations, but drug resistance frequently develops. Because of the immunosuppressive nature of the signaling network controlled by oncogenic KRAS, these drugs can indirectly affect antitumor immunity, providing a rationale for their combination with immune checkpoint blockade. In this study, we have characterized how KRAS inhibition reverses immunosuppression driven by oncogenic KRAS in a number of preclinical lung cancer models with varying levels of immunogenicity.
View Article and Find Full Text PDFMouse models are critical in pre-clinical studies of cancer therapy, allowing dissection of mechanisms through chemical and genetic manipulations that are not feasible in the clinical setting. In studies of the tumour microenvironment (TME), multiplexed imaging methods can provide a rich source of information. However, the application of such technologies in mouse tissues is still in its infancy.
View Article and Find Full Text PDFIn the search for therapeutic combinations for the treatment of cancer, the pairing of targeted inhibitors of oncogenic driver pathways with immunotherapy has largely been overlooked. In Nature, Canon et al. (2019) describe how the novel KRAS-G12C inhibitor AMG 510 can potentiate immune rejection in combination with immune checkpoint blockade.
View Article and Find Full Text PDFKRAS represents an excellent therapeutic target in lung cancer, the most commonly mutated form of which can now be blocked using KRAS-G12C mutant-specific inhibitory trial drugs. Lung adenocarcinoma cells harboring KRAS mutations have been shown previously to be selectively sensitive to inhibition of mitogen-activated protein kinase kinase (MEK) and insulin-like growth factor 1 receptor (IGF1R) signaling. Here, we show that this effect is markedly enhanced by simultaneous inhibition of mammalian target of rapamycin (mTOR) while maintaining selectivity for the KRAS-mutant genotype.
View Article and Find Full Text PDFIn order to catalyse the splicing of messenger RNA, multiple proteins and RNA components associate and dissociate in a dynamic highly choreographed process. The Prp19 complex is a conserved essential part of the splicing machinery thought to facilitate the conformational changes the spliceosome undergoes during catalysis. Dynamic protein interactions often involve highly disordered regions that are difficult to study by structural methods.
View Article and Find Full Text PDFCTNNBL1 is a spliceosome-associated protein that binds nuclear localization signals (NLSs) in splice factors CDC5L and Prp31 as well as the antibody diversifying enzyme AID. Here, crystal structures of human CTNNBL1 reveal a distinct structure from its closest homologue karyopherin-α. CTNNBL1 comprises a HEAT-like domain (including a nuclear export signal), a central armadillo domain, and a coiled-coil C-terminal domain.
View Article and Find Full Text PDFCTNNBL1 is an armadillo-repeat protein that associates with the CDC5L/Prp19 complex of the spliceosome. Unlike the majority of spliceosomal proteins (and despite having no obvious homologs), CTNNBL1 is inessential for cell viability as revealed by studies in both vertebrate B cell lines and in fission yeast. Here, however, we show that ablation of CTNNBL1 in the mouse germline results in mid-gestation embryonic lethality but that lineage-specific CTNNBL1 ablation in early B cell precursors does not affect the production and abundance of mature B lymphocytes.
View Article and Find Full Text PDFRecently, conflicting results were reported on the hypermutation activity of activation-induced cytidine deaminase (AID) splice variants. With the generation of single point mutations, we studied the structure-function relationship of the amino acids that are commonly absent from all described splice variants. The results from this analysis pointed to several amino acids that are required for class switch recombination (CSR), without perturbing cellular localization or nucleocytoplasmic shuttling.
View Article and Find Full Text PDFIn addition to the classical TH1 and TH2 cytokines, members of the recently identified IL-17 cytokine family play an important role in regulating cellular and humoral immune responses. At present nothing is known about the role of these cytokines in atherosclerosis. Expression of IL-17A, -E and -F was investigated in atherosclerotic tissue by rtPCR and immunohistochemistry.
View Article and Find Full Text PDFChronic autoimmune or pathogen-induced immune reactions resulting in lymphoid neogenesis are associated with development of malignant lymphomas, mostly extranodal marginal zone B-cell lymphomas (MZBCLs). In this review we address (i) chemokines and adhesion molecules involved in lymphoid neogenesis; (ii) the autoimmune diseases and pathogens which are associated with development of B-cell lymphomas; (iii) the molecular mechanisms involved in the initiation and progression of MZBCL; and (iv) 'potential' mouse models for MZBCL.
View Article and Find Full Text PDFExtranodal marginal zone B-cell lymphomas (MZBCLs) arise on a background of chronic inflammation resulting from organ-specific autoimmunity, infection, or by unknown causes. Well-known examples are salivary gland MZBCL in Sjögren's sialadenitis and gastric MZBCL in Helicobacter pylori gastritis. MZBCLs express CXCR3, a receptor for interferon-gamma-induced chemokines highly expressed in the chronic inflammatory environment.
View Article and Find Full Text PDFContemporary pathology involves an emerging role for molecular diagnostics. Current tissue handling procedures [ie, formalin fixation and paraffin embedment (FFPE)] have their origin in the aim to obtain good tissue morphology and optimal results within immunohistochemistry. Unfortunately, FFPE is notorious for its poor RNA conservation capacities.
View Article and Find Full Text PDFTo reveal migration trails of antigen-responsive B cells in lymphoid tissue, we analyzed immunoglobulin (Ig)M-V(H) and IgG-V(H) transcripts of germinal center (GC) samples microdissected from three reactive human lymph nodes. Single B cell clones were found in multiple GCs, one clone even in as many as 19 GCs. In several GCs, IgM and IgG variants of the same clonal origin were identified.
View Article and Find Full Text PDFBackground And Objectives: Activation-induced cytidine deaminase is essential for somatic hypermutation and class switch recombination of the immunoglobulin genes in B cells. It has been proposed that aberrant targeting of the somatic hypermutation machinery is instrumental in initiation and progression of B-cell non Hodgkin's lymphomas. In this study, we investigated the B-cell receptor and the role of the somatic hypermutation machinery in B-cell chronic lymphocytic leukemias (B-CLL) prior to and after transformation to a lymphoma of a higher malignancy grade (Richter's transformation).
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) such as gelatinases are believed to play an important role in invasion and metastasis of cancer. In this study we investigated the possible role of MMP-2 and MMP-9 in an experimental model of colon cancer metastasis in rat liver. We demonstrated with gelatin zymography that the tumors contained MMP-2 and MMP-9, but only MMP-2 was present in the active form.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.