Extreme weather has made 2023 virtually certain to be the warmest year on record, signaling unprecedented climate and biodiversity crises. Brazil, the world’s most biodiverse country, with two hotspots and complex social and economic layers, has experienced escalating environmental degradation over the past years. Alarming rates of native vegetation loss, wildfires, severe and prolonged droughts, and heatwaves have adversely impacted several Brazilian ecosystems and societies.
View Article and Find Full Text PDFBrazil is among the main contributors to global biodiversity, which, in turn, provides extensive ecosystem services. Agriculture is an activity that benefits greatly from these ecosystem services, but at the same time is degrading aquatic and terrestrial ecosystems and eroding Brazilian biodiversity. This conflict is growing, as emerging unsustainable legislative proposals that will benefit the agricultural sector are likely to accelerate the decline of biodiversity.
View Article and Find Full Text PDFIn recent years, the loss of forest in the Brazilian Amazon has taken on alarming proportions, with 2021 recording the largest increase in 13 years, particularly in the Abunã-Madeira Sustainable Development Reserve (SDR). This has significant environmental, social, and economic repercussions globally and for the local communities reliant on the forest. Analyzing deforestation patterns and trends aids in comprehending the dynamics of occupation and deforestation within a critical Amazon region, enabling the inference of potential occupation pathways.
View Article and Find Full Text PDFEnviron Monit Assess
November 2023
The scenario of deforestation in the Amazon may change with the reconstruction of Highway BR-319, a long-distance road that will expand the region's agricultural frontier towards the north and west of the Western Amazon, stretches that until then have extensive areas of primary forest due to the hard access. We simulate the deforestation that would be caused by the reconstruction and paving of Highway BR-319 in Brazil's state of Amazonas for the period from 2021 to 2100. The scenarios were based on the historical dynamics of deforestation in the state of Amazonas (business as usual, or BAU).
View Article and Find Full Text PDFFor more than three decades, major efforts in sampling and analyzing tree diversity in South America have focused almost exclusively on trees with stems of at least 10 and 2.5 cm diameter, showing highest species diversity in the wetter western and northern Amazon forests. By contrast, little attention has been paid to patterns and drivers of diversity in the largest canopy and emergent trees, which is surprising given these have dominant ecological functions.
View Article and Find Full Text PDFIn January 2021, oxygen supplies in the Amazon region's largest city were allowed to run out at the peak of the second wave of the COVID-19 epidemic, shocking the world as hospital patients expired for lack of this basic medical resource in Manaus, which during the first COVID-19 wave had become the world's first city to bury its dead in mass graves. Brazil's authorities used this tragedy to further a political agenda that implies enormous environmental and human-rights consequences. Transport of oxygen was used to promote building a road that, together with its planned side roads, would give deforesters access to much of what remains of Brazil's Amazon Forest.
View Article and Find Full Text PDFGiven the speed at which humans are changing the climate, species with high degrees of endemism may not have time to avoid extinction through adaptation. We investigated through teleconnection analysis the origin of rainfall that determines the phylogenetic diversity of rainforest frogs and the effects of microclimate differences in shaping the morphological traits of isolated populations (which contribute to greater phylogenetic diversity and speciation). We also investigated through teleconnection analysis how deforestation in Amazonia can affect ecosystem services that are fundamental to maintaining the climate of the Atlantic rainforest biodiversity hotspot.
View Article and Find Full Text PDFBackground: Terrestrial biomes in South America are likely to experience a persistent increase in environmental temperature, possibly combined with moisture reduction due to climate change. In addition, natural fire ignition sources, such as lightning, can become more frequent under climate change scenarios since favourable environmental conditions are likely to occur more often. In this sense, changes in the frequency and magnitude of natural fires can impose novel stressors on different ecosystems according to their adaptation to fires.
View Article and Find Full Text PDFZoonotic spillover is a phenomenon characterized by the transfer of pathogens between different animal species. Most human emerging infectious diseases originate from non-human animals, and human-related environmental disturbances are the driving forces of the emergence of new human pathogens. Synthesizing the sequence of basic events involved in the emergence of new human pathogens is important for guiding the understanding, identification, and description of key aspects of human activities that can be changed to prevent new outbreaks, epidemics, and pandemics.
View Article and Find Full Text PDF