For many years, a method that allowed systemic toxicity safety assessments to be conducted without generating new animal test data, seemed out of reach. However, several different research groups and regulatory authorities are beginning to use a variety of in silico, in chemico and in vitro techniques to inform safety decisions. To manage this transition to animal-free safety assessments responsibly, it is important to ensure that the level of protection offered by a safety assessment based on new approach methodologies (NAMs), is at least as high as that provided by a safety assessment based on traditional animal studies.
View Article and Find Full Text PDFAims: Long-acting cabotegravir and rilpivirine have been approved to manage HIV in adults, but data regarding safe use in pregnancy are limited. Physiologically-based pharmacokinetic (PBPK) modelling was used to simulate the approved dosing regimens in pregnancy and explore if C was maintained above cabotegravir and rilpivirine target concentrations (664 and 50 ng/mL, respectively).
Methods: An adult PBPK model was validated using clinical data of cabotegravir and rilpivirine in nonpregnant adults.
Estimating human exposure in the safety assessment of chemicals is crucial. Physiologically based kinetic (PBK) models which combine information on exposure, physiology, and chemical properties, describing the absorption, distribution, metabolism, and excretion (ADME) processes of a chemical, can be used to calculate internal exposure metrics such as maximum concentration and area under the concentration-time curve in plasma or tissues of a test chemical in next-generation risk assessment. This article demonstrates the development of PBK models for 3 UV filters, specifically octyl methoxycinnamate, octocrylene, and 4-methylbenzylidene camphor.
View Article and Find Full Text PDFDeveloping long-acting products and formulations for infectious diseases is a nontrivial undertaking that is frequently classified as high risk and low reward by the pharmaceutical industry. The Long-Acting/Extended Release Antiretroviral Research Resource Program (LEAP) was founded in 2015 with the support of the National Institutes of Health to encourage, promote, and accelerate the development of such products. Assessment methodology for any new proposal brought to this group is part of a framework-the LEAP Process-that includes a landscape analysis of what is currently available in the public domain.
View Article and Find Full Text PDFThe aim of the study was to apply Physiologically-Based Pharmacokinetic (PBPK) modelling to predict the effect of liver disease (LD) on the pharmacokinetics (PK) of dexamethasone (DEX) in the treatment of COVID-19. A whole-body PBPK model was created to simulate 100 adult individuals aged 18-60 years. Physiological changes (e.
View Article and Find Full Text PDFObjectives: The aim of this study was to simulate the drug-drug interaction (DDI) between ritonavir-boosted atazanavir (ATV/r) and rifampicin (RIF) using physiologically based pharmacokinetic (PBPK) modelling, and to predict suitable dose adjustments for ATV/r for the treatment of people living with HIV (PLWH) co-infected with tuberculosis.
Methods: A whole-body DDI PBPK model was designed using Simbiology 9.6.
Background: Only a few antiretroviral drugs (ARVs) are recommended for use during the neonatal period and there is a need for more to be approved to increase treatment and prophylaxis strategies. Dolutegravir, a selective integrase inhibitor, has potential for treatment of HIV infection and prophylaxis of transmission in neonates.
Objectives: To model the pharmacokinetics of dolutegravir in neonates and to simulate a theoretical optimal dosing regimen.
A growing number of approaches to "staple" α-helical peptides into a bioactive conformation using cysteine cross-linking are emerging. Here, the replacement of l-cysteine with "cysteine analogues" in combinations of different stereochemistry, side chain length and beta-carbon substitution, is explored to examine the influence that the thiol-containing residue(s) has on target protein binding affinity in a well-explored model system, p53-MDM2/MDMX, which is constituted by the interaction of the tumour suppressor protein p53 and proteins MDM2 and MDMX, which regulate p53 activity. In some cases, replacement of one or more l-cysteine residues afforded significant changes in the measured binding affinity and target selectivity of the peptide.
View Article and Find Full Text PDF