The functional activity among STAT3 and PIM1, are key signaling events for cancer cell function. Curcumin, a diarylheptanoid isolated from turmeric, effectively inhibits STAT3 signaling. Selectively, we attempted to address interactions of STAT3, PIM1 and Curcumin for therapeutic intervention using in silico and in vitro experimental approaches.
View Article and Find Full Text PDFThe trafficking of T-cells through peripheral tissues and into afferent lymphatic vessels is essential for immune surveillance and an adaptive immune response. Glycogen synthase kinase 3β (GSK3β) is a serine/threonine kinase and regulates numerous cell/tissue-specific functions, including cell survival, metabolism, and differentiation. Here, we report a crucial involvement of GSK3β in T-cell motility.
View Article and Find Full Text PDFThe steroidal lactone withaferin A (WFA) is a dietary phytochemical, derived from Withania somnifera. It exhibits a wide range of biological properties, including immunomodulatory, anti-inflammatory, antistress, and anticancer activities. Here we investigated the effect of WFA on T-cell motility, which is crucial for adaptive immune responses as well as autoimmune reactions.
View Article and Find Full Text PDFCancers (Basel)
March 2021
Multiple myeloma (MM) is a hematological malignancy characterized by plasma cells' uncontrolled growth. The major barrier in treating MM is the occurrence of primary and acquired therapy resistance to anticancer drugs Often, this therapy resistance is associated with constitutive hyperactivation of tyrosine kinase signaling. Novel covalent kinase inhibitors, such as the clinically approved BTK inhibitor ibrutinib (IBR) and the preclinical phytochemical withaferin A (WA), have, therefore, gained pharmaceutical interest.
View Article and Find Full Text PDFDelivery of conventional antisense oligonucleotides or small interfering RNA (siRNA) molecules into hematolymphoid cells for targeted gene silencing has been proven to be difficult. Here, we describe a simple protocol to knockdown specific gene(s) in malignant hematolymphoid cells using "GapmeR." This protocol could be applicable to a wide range of cell-types and thus solves an important problem for researchers working with cell lines or primary cells derived from patients with hematolymphoid malignancies.
View Article and Find Full Text PDFHere we report our perspective on applying GapmeR technology in combination with recombinant angiotensin-converting enzyme 2 (ACE2) in the treatment of COVID-19 patients. GapmeR is a cell-permeating antisense single-stranded DNA molecule that can be designed to specifically target intracellular severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Once internalized into host cells, such as lung alveolar cells, GapmeR molecules can bind to the viral RNA.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
Bacterial colonization of acute and chronic wounds is often associated with delayed wound healing and prolonged hospitalization. The rise of multi-drug resistant bacteria and the poor biocompatibility of topical antimicrobials warrant safe and effective antimicrobials. Antimicrobial agents that target microbial membranes without interfering with the mammalian cell proliferation and migration hold great promise in the treatment of traumatic wounds.
View Article and Find Full Text PDFHerein, we disclose the first set of unique selenium-containing SnAP reagents for the direct synthesis of C-substituted selenomorpholines and 1,4-selenazepanes, including their amino acid derivatives from commercially available aldehydes under mild conditions. These elusive N-unprotected heterocycles are not accessible by classical routes. Biological evaluation of these compounds revealed promising activities against clinically relevant fungal strains.
View Article and Find Full Text PDFEfficient intracellular nucleic acid delivery into mammalian cells remains a long-standing challenge owing to poor cell permeability and uptake of naked nucleic acids across the cell membrane and limited cargo stability. Conventional delivery methods have several drawbacks, such as cytotoxicity, limited cell-type applicability, low efficiency, hindrances that limit the potential of oligonucleotide delivery in functional genomics, therapeutics and diverse research applications. Thus, new approaches that are robust, safe, effective and valid across multiple cell types are much needed.
View Article and Find Full Text PDFIncreased evolution of multidrug resistant pathogens necessitates the development of multifunctional antimicrobials. There is a perceived need for developing new antimicrobials that can interfere with acute inflammation after bacterial infections. Here, we investigated the therapeutic potential of linear polyethylenimine (LPEI) and .
View Article and Find Full Text PDFAnalysis of protein-protein interactions is important for better understanding of molecular mechanisms involved in immune regulation and has potential for elaborating avenues for drug discovery targeting T-cell motility. Currently, only a small fraction of protein-protein interactions have been characterized in T-lymphocytes although there are several detection methods available. In this regard, computational approaches garner importance, with the continued explosion of genomic and proteomic data, for handling protein modeling and protein-protein interactions in large scale.
View Article and Find Full Text PDFThe immune synapse is a complex cellular structure that enables cell-cell communications between immune cells, mainly at the interface of an effector T-cell and an antigen-presenting cell (APC) that expresses the appropriate peptide-MHC complexes. With progressive technological advances, there has been increasing interest in understanding molecular events that take place in motile T-lymphocytes at the immune synapse. Here, we provide an optimized method to induce the formation of an immune synapse between a T-cell and an APC in vitro.
View Article and Find Full Text PDFT-Lymphocyte kinases are important checkpoints that control T-cell motility by regulating a diverse range of signal transduction pathways. The distinct configuration of kinase events in T-cell could be used to fingerprint the status of T-cells. However, only small fraction human kinases have been characterized so far and little is known about the dynamics of the kinome in motile T-cells.
View Article and Find Full Text PDFGene silencing is an important method to study gene functions in health and diseases. While there are various techniques that are applied to knockdown specific gene(s) of interest, they have certain limitations in application to T-lymphocytes. T-cells are "hard-to-transfect" cells and are recalcitrant to transfection reagents.
View Article and Find Full Text PDFRegulated migration of T-lymphocytes through high endothelial venules and secondary lymphoid organs is necessary for an adaptive immune response. Uncontrolled trafficking of T-cells is implicated in many pathological conditions, including autoimmune disorders, such as psoriasis and inflammatory bowel disease. T-cell migration is regulated mainly by the αLβ2 integrin receptor LFA-1, which interacts primarily with its cognate ligand ICAM-1 expressed on the endothelium.
View Article and Find Full Text PDFPeripheral blood is the most common source of T-lymphocytes for in vitro culture. Here, we present a simple and standardized method for small- or large-scale isolation of viable T-lymphocytes and other mononuclear cells from fresh peripheral blood or buffy coat blood samples using the density gradient centrifugation. T-cells obtained using the protocol described here can be used for a variety of downstream analysis, including cellular, molecular, and functional assays.
View Article and Find Full Text PDFThe mammalian and microbial cell selectivity of synthetic and biosynthetic cationic polymers has been investigated. Among the polymers with peptide backbones, polymers containing amino side chains display greater antimicrobial activity than those with guanidine side chains, whereas ethylenimines display superior activity over allylamines. The biosynthetic polymer ε-polylysine (εPL) is noncytotoxic to primary human dermal fibroblasts at concentrations of up to 2,000 μg/ml, suggesting that the presence of an isopeptide backbone has greater cell selectivity than the presence of α-peptide backbones.
View Article and Find Full Text PDFThere is a growing demand for durable advanced wound dressings for the management of persistent infections after deep burn injuries. Herein, we demonstrated the preparation of durable antimicrobial nanofiber mats, by taking advantage of strong interfacial interactions between polyhydroxy antibiotics (with varying number of OH groups) and gelatin and their in-situ crosslinking with polydopamine (pDA) using ammonium carbonate diffusion method. Polydopamine crosslinking did not interfere with the antimicrobial efficacy of the loaded antibiotics.
View Article and Find Full Text PDFPost-transcriptional gene silencing holds great promise in discovery research for addressing intricate biological questions and as therapeutics. While various gene silencing approaches, such as siRNA and CRISPR-Cas9 techniques, are available, these cannot be effectively applied to "hard-to-transfect" primary T-lymphocytes. The locked nucleic acid-conjugated chimeric antisense oligonucleotide, called "GapmeR", is an emerging new class of gene silencing molecule.
View Article and Find Full Text PDFElectrospinning of naturally occurring biopolymers for biological applications requires postspinning cross-linking for endurance in protease-rich microenvironments and prevention of rapid dissolution. The most commonly used cross-linkers often generate cytotoxic byproducts, which necessitate high concentrations or time-consuming procedures. Herein, we report the addition of "safe" catecholamine cross-linkers to collagen or gelatin dope solutions followed by electrospinning yielded junction-containing nanofibrous mats.
View Article and Find Full Text PDFUnlabelled: We report here structure-property relationship between linear and branched polyethylene imines by examining their antimicrobial activities against wide range of pathogens. Both the polymers target the cytoplasmic membrane of bacteria and yeasts, eliciting rapid microbicidal properties. Using multiscale molecular dynamic simulations, we showed that, in both fully or partially protonated forms LPEI discriminates between mammalian and bacterial model membranes whereas BPEI lacks selectivity for both the model membranes.
View Article and Find Full Text PDFRab GTPases control membrane traffic and receptor-mediated endocytosis. Within this context, Rab5a plays an important role in the spatial regulation of intracellular transport and signal transduction processes. Here, we report a previously uncharacterized role for Rab5a in the regulation of T-cell motility.
View Article and Find Full Text PDFVibrio cholerae uses quorum sensing communication system to interact with other bacteria and for gauzing environmental parameters. This organism dwells equally well in both human host and aquatic environments. Quorum sensing regulates multitude of activities and is one of the lucrative targets presently pursued for drug design in bacteria to encounter virulence.
View Article and Find Full Text PDFVibrio cholerae is the causative agent of the diarrheal disease cholera. Although antibiotic therapy shortens the duration of diarrhea, excessive use has contributed to the emergence of antibiotic resistance in V. cholerae.
View Article and Find Full Text PDFVibrio cholerae produces cholera toxin (CT) that consists of two subunits, A and B, and is encoded by a filamentous phage CTXΦ. The A subunit carries enzymatic activity that ribosylates ADP, whereas the B subunit binds to monosialoganglioside (GM1) receptor in epithelial cells. Molecular analysis of toxigenic V.
View Article and Find Full Text PDF