B-cell maturation antigen (BCMA) plays a pathobiologic role in myeloma and is a validated target with five BCMA-specific therapeutics having been approved for relapsed/refractory disease. However, these drugs are not curative, and responses are inferior in patients with molecularly-defined high-risk disease, including those with deletion 17p (del17p) involving the tumor suppressor , supporting the need for further drug development. Del17p has been associated with reduced copy number and gene expression of RNA polymerase II subunit alpha () in other tumor types.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is a haematologic malignancy. The proteasome inhibitor (PI) bortezomib has been approved to treat MCL, but resistance has emerged through mechanisms that remain unclear. This study aimed to explore the mechanism of PI resistance in MCL and identify new targets for this patient subgroup.
View Article and Find Full Text PDFDiffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma; 40% of patients relapse after a complete response or are refractory to therapy. To survive, the activated B-cell (ABC) subtype of DLBCL relies upon B-cell receptor signaling, which can be modulated by the activity of Bruton tyrosine kinase (BTK). Targeting BTK with ibrutinib, an inhibitor, provides a therapeutic approach for this subtype of DLBCL.
View Article and Find Full Text PDFSmall molecules targeting the cereblon-containing E3 ubiquitin ligase including thalidomide, lenalidomide, and pomalidomide modulate turnover of downstream client proteins and demonstrate pre-clinical and clinical anti-myeloma activity. Different drugs that engage with cereblon hold the potential of unique phenotypic effects, and we therefore studied the novel protein homeostatic modulator (PHM™) BTX306 with a unique thiophene-fused scaffold bearing a substituted phenylurea and glutarimide. This agent much more potently reduced human-derived myeloma cell line viability, with median inhibitory concentrations in the single nanomolar range versus micromolar values for lenalidomide or pomalidomide, and more potently activated caspases 3/8/9.
View Article and Find Full Text PDFThree proteasome inhibitors have garnered regulatory approvals in various multiple myeloma settings; but drug resistance is an emerging challenge, prompting interest in blocking upstream components of the ubiquitin-proteasome pathway. One such attractive target is the E1 ubiquitin-activating enzyme (UAE); we therefore evaluated the activity of TAK-243, a novel and specific UAE inhibitor. TAK-243 potently suppressed myeloma cell line growth, induced apoptosis, and activated caspases while decreasing the abundance of ubiquitin-protein conjugates.
View Article and Find Full Text PDFPurpose: Waldenström's macroglobulinemia is an incurable lymphoproliferative disorder driven by an L265P mutation in the myeloid differentiation primary response gene 88 (), which activates downstream NF-κB signaling through the Myddosome. As this pathway depends in part on activity of interleukin-1 receptor-associated kinases (IRAKs)-1 and -4, we sought to evaluate the potential of the IRAK1/4 inhibitor R191 in preclinical models.
Experimental Design: Patient-derived cell lines and primary samples were used in both and experiments to model Waldenström's macroglobulinemia and its response to IRAK1/4 inhibitors.
Bromodomain and extraterminal (BET) domain containing protein (BRD)-4 modulates the expression of oncogenes such as c-myc, and is a promising therapeutic target in diverse cancer types. We performed pre-clinical studies in myeloma models with bi-functional protein-targeting chimeric molecules (PROTACs) which target BRD4 and other BET family members for ubiquitination and proteasomal degradation. PROTACs potently reduced the viability of myeloma cell lines in a time-dependent and concentration-dependent manner associated with G/G arrest, reduced levels of CDKs 4 and 6, increased p21 levels, and induction of apoptosis.
View Article and Find Full Text PDFBackground: Mucormycosis is a destructive invasive mold infection afflicting patients with diabetes and hematologic malignancies. Patients with diabetes are often treated with statins, which have been shown to have antifungal properties. We sought to examine the effects of statins on Rhizopus oryzae, a common cause of mucormycosis.
View Article and Find Full Text PDFPseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) colonize cystic fibrosis (CF) patient airways. Pa culture filtrates inhibit Af biofilms, and Pa non-CF, mucoid (Muc-CF) and nonmucoid CF (NMuc-CF) isolates form an ascending inhibitory hierarchy. We hypothesized this activity is mediated through apoptosis induction.
View Article and Find Full Text PDFWe hypothesized that the cell wall inhibitor micafungin (MICA) induces apoptosis in both MICA-susceptible (MICA-S) and MICA-non-susceptible (MICA-NS) . Antifungal activity and apoptosis were analyzed in MICA-S and MICA-NS strains following exposure to micafungin for 3 h at 37°C in RPMI 1640 medium. Apoptosis was characterized by detecting phosphatidylserine externalization (PS), plasma membrane integrity, reactive oxygen species (ROS) generation, mitochondrial membrane potential changes, adenosine triphosphate (ATP) release, and caspase-like activity.
View Article and Find Full Text PDFMortality associated with mucormycosis remains high despite current antifungals. Iron-starvation strategies have been shown to have promising activity against Mucorales. We hypothesized that iron starvation enhances apoptosis in Rhizopus oryzae.
View Article and Find Full Text PDFIn an experimental model of obesity and hyperglycemia in Drosophila melanogaster we studied the effect of diet modification and administration of metformin on systemic infection with Rhizopus, a common cause of mucormycosis in diabetic patients. Female Wt-type Drosophila flies were fed regular (RF) or high-fat diet (HFD; 30% coconut oil) food with or without metformin for 48 h and then injected with R. oryzae.
View Article and Find Full Text PDFHigh concentrations of methylprednisolone (0.32 mg/mL) accelerated growth and attenuated spontaneous apoptosis of Exserohilum rostratum in vitro. Injection of E.
View Article and Find Full Text PDFThe incidence of mucormycosis has dramatically increased in immunocompromised patients. Moreover, the array of cellular targets whose inhibition results in fungal cell death is rather limited. Mitochondria have been mechanistically identified as central regulators of detoxification and virulence in fungi.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2013
The high mortality rate of mucormycosis with currently available monotherapy has created interest in studying novel strategies for antifungal agents. With the exception of amphotericin B (AMB), the triazoles (posaconazole [PCZ] and itraconazole [ICZ]) are fungistatic in vitro against Rhizopus oryzae . We hypothesized that growth at a high temperature (42°C) results in fungicidal activity of PCZ and ICZ that is mediated through apoptosis.
View Article and Find Full Text PDFThe incidence of mucormycosis has increased drastically in immunocompromised patients. Also the array of targets whose inhibition results in Mucorales death is limited. Recently, researchers identified mitochondria as important regulators of detoxification and virulence mechanisms in fungi.
View Article and Find Full Text PDFStereoselective synthesis of novel steroidal C-20 tertiary alcohols with thiazole and pyridine side chain using Grignard reaction of steroidal ketones and thiazole/pyridine magnesium bromide have been realized. These molecules were evaluated in vitro for their antifungal and antibacterial activities. Most of the compounds exhibited significant antifungal and antibacterial activity against all the tested strains.
View Article and Find Full Text PDFClick reaction approach toward the synthesis of two sets of novel 1,2,3-triazolyl linked uridine derivatives 19a-19g and 21a-21g was achieved by Cu(I)-catalyzed 1,3-dipolar cycloaddition of 5'-azido-5'-deoxy-2',3'-O-(1-methylethylidene)uridine (17) with propargylated ether of phenols 18a-18g and propargylated esters 20a-20g. Structure of one of the representative compound 19d was unambiguously confirmed by X-ray crystallography. Chitin synthase inhibition study of all these compounds 19a-19g and 21a-21g was carried out to develop antifungal strategy.
View Article and Find Full Text PDFWe report herein the synthesis and biological evaluation of bile acid dimers linked through 1,2,3-triazole and bis-beta-lactam. The dimers were synthesized using 1,3-dipolar cycloaddition reaction of diazido bis-beta-lactams , and terminal alkynes derived from cholic acid/deoxycholic acid in the presence of Cu(i) catalyst (click chemistry). These novel molecules were evaluated in vitro for their antifungal and antibacterial activity.
View Article and Find Full Text PDFTetrapeptides derived from glycine and beta-alanine were hooked at the C-3beta position of the modified cholic acid to realize novel linear tetrapeptide-linked cholic acid derivatives. All the synthesized compounds were tested against a wide variety of microorganisms (gram-negative bacteria, gram-positive bacteria and fungi) and their cytotoxicity was evaluated against human embryonic kidney (HEK293) and human mammary adenocarcinoma (MCF-7) cell lines. While relatively inactive by themselves, these compounds interact synergistically with antibiotics such as fluconazole and erythromycin to inhibit growth of fungi and bacteria, respectively, at 1-24 microg/mL.
View Article and Find Full Text PDFSynthesis of novel 1,2,3-triazole-linked beta-lactam-bile acid conjugates 17-24 using 1,3-dipolar cycloaddition reaction of azido beta-lactam and terminal alkyne of bile acids in the presence of Cu(I) catalyst (click chemistry) have been realized. These molecules were evaluated in vitro for their antifungal and antibacterial activities. Most of the compounds exhibited significant antifungal and moderate antibacterial activity against all the tested strains.
View Article and Find Full Text PDF