Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a).
View Article and Find Full Text PDFMatrix vesicles (MVs) provide the initial site for amorphous hydroxyapatite (HA) formation within mineralizing osteoblasts. Although Na/Ca exchanger isoform-3 (NCX3, SLC8A3) was presumed to function as major Ca transporter responsible for Ca extrusion out of osteoblast into the calcifying bone matrix, its presence and functional role in MVs have not been investigated. In this study, we investigated the involvement of NCX3 in MV-mediated mineralization process and its impact on bone formation.
View Article and Find Full Text PDFAlthough the role of the intestinal microbiota in the pathogenesis of inflammatory bowel disease (IBD) is beyond debate, attempts to verify the causative role of IBD-associated dysbiosis have been limited to reports of promoting the disease in genetically susceptible mice or in chemically induced colitis. We aimed to further test the host response to fecal microbiome transplantation (FMT) from Crohn's disease patients on mucosal homeostasis in ex-germ-free (xGF) mice. We characterized and transferred fecal microbiota from healthy patients and patients with defined Crohn's ileocolitis (CD_L3) to germ-free mice and analyzed the resulting microbial and mucosal homeostasis by 16S profiling, shotgun metagenomics, histology, immunofluorescence (IF) and RNAseq analysis.
View Article and Find Full Text PDFBackground And Aims: Sodium-hydrogen exchanger 8 (NHE8) is expressed in array of tissues and has pleiotropic functions beyond simply exchanging sodium and hydrogen across cell membrane. This study investigates the expression pattern of liver NHE8 and its roles in carbon tetrachloride (CCl4)-induced liver injury.
Methods: NHE8 expression pattern was investigated in mouse livers of different ages and in HepG2 cells.
The Na/H exchanger transporters (NHE) play an important role in various biologic processes including Na absorption, intracellular pH homeostasis, cell volume regulation, proliferation, and apoptosis. The wide expression pattern and cellular localization of NHEs make these proteins pivotal players in virtually all human tissues and organs. In addition, recent studies suggest that NHEs may be one of the primeval transport protein forms in the history of life.
View Article and Find Full Text PDFPurpose: Gut dysbiosis can cause cardiometabolic disease. Gut dysbiosis can be independently caused by high-fat diet (HFD) and intermittent hypoxia (IH; characterizing obstructive sleep apnea), but the interactive effect of combined intermittent and sustained hypoxia (IH+SH) (characterizing obesity hypoventilation syndrome) and HFD on gut dysbiosis is unclear. We aimed to investigate the interactive effect of a combination of IH and SH and HFD on proximal colonic microbiota and colonic gene expression pattern.
View Article and Find Full Text PDFDysregulation of intra- and extracellular pH in cancer contributes to extracellular matrix remodeling, favors cell migration, proliferation, and metastasis. Although the primary attention has been focused on the role of the ubiquitous Na/H exchanger isoform NHE1, the role of NHE3, the predominant apical isoform in colonic surface epithelium in the pathogenesis of colon cancer has not been investigated. Here, we show that NHE3 mRNA expression is significantly reduced in colorectal cancer patients and that low NHE3 expression is associated with poorer survival.
View Article and Find Full Text PDFInorganic arsenic (iAs) exposure has been associated to various detrimental effects such as development of metabolic syndrome and type 2 diabetes via oxidative stress and induced prolonged activation of the NRF2 transcription factor. Such effects can be aggravated by poor dietary habits. The role of gut microbiota in promoting metabolic changes in response to arsenic has yet to be precisely defined.
View Article and Find Full Text PDFAntibiotics have improved survival from previously deadly infectious diseases. Antibiotics alter the microbial composition of the gut microbiota, and these changes are associated with diminished innate immunity and decline in cognitive function in older adults. The composition of the human microbiota changes with age over the human lifespan.
View Article and Find Full Text PDFDisabled-2 (DAB2) is a clathrin and cargo binding endocytic adaptor protein recognized for its multifaceted roles in signaling pathways involved in cellular differentiation, proliferation, migration, tumor suppression, and other fundamental homeostatic cellular mechanisms. The requirement for DAB2 in the canonical TGFβ signaling in fibroblasts suggested that a similar mechanism may exist in immune cells and that DAB2 may contribute to immunological tolerance and suppression of inflammatory responses. In this review, we synthesize the current state of knowledge on the roles of DAB2 in the cells of the innate and adaptive immune system, with particular focus on antigen presenting cells (APCs; macrophages and dendritic cells) and regulatory T cells (Tregs).
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
October 2020
The loss of the intestinal Na/H exchanger isoform 8 (NHE8) results in an ulcerative colitis-like condition with reduction of mucin production and dysbiosis, indicating that NHE8 plays an important role in intestinal mucosal protection. The aim of this study was to investigate the potential rebalance of the altered microbiota community of NHE8-deficient mice via fecal microbiota transplantation (FMT) and feeding probiotic VSL#3. We also aimed to stimulate mucin production by sodium butyrate administration via enema.
View Article and Find Full Text PDFBackground & Aims: Intestinal epithelial cells (IECs) provide a barrier that separates the mucosal immune system from the luminal microbiota. IECs constitutively express low levels of major histocompatibility complex (MHC) class II proteins, which are upregulated upon exposure to interferon gamma. We investigated the effects of deleting MHCII proteins specifically in mice with infectious, dextran sodium sulfate (DSS)-, and T-cell-induced colitis.
View Article and Find Full Text PDFPediatr Gastroenterol Hepatol Nutr
November 2019
With improving survival of children with complex congenital heart disease (CCHD), postoperative complications, like protein-losing enteropathy (PLE) are increasingly encountered. A 3-year-old girl with surgically corrected CCHD (ventricular inversion/L-transposition of the great arteries, ventricular septal defect, pulmonary atresia, post-double switch procedure [Rastelli and Glenn]) developed chylothoraces. She was treated with pleurodesis, thoracic duct ligation and subsequently developed chylous ascites and PLE (serum albumin ≤0.
View Article and Find Full Text PDFInflamm Bowel Dis
January 2020
Background: Inflammatory bowel disease (IBD) is a multifactorial disorder, with the innate and adaptive immune cells contributing to disease initiation and progression. However, the intricate cross-talk between immune cell lineages remains incompletely understood. The role of CD8+ T cells in IBD pathogenesis has been understudied, largely due to the lack of appropriate models.
View Article and Find Full Text PDFDendritic cells (DCs) are pivotal in regulating tolerogenic as well as immunogenic responses against microorganisms by directing both the innate and adaptive immune response. In health, phenotypically different DC subsets found in the gut mucosa are maintained in their tolerogenic state but switch to a pro-inflammatory phenotype during infection or chronic autoinflammatory conditions such as inflammatory bowel disease (IBD). The mechanisms that promote the switch among the mucosal DCs from a tolerogenic to an immunogenic, pro-inflammatory phenotype are incompletely understood.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
April 2019
Background & Aims: Lgr5 overexpression has been detected in colorectal cancers (CRCs), including some cases of colitis-associated CRCs. In colitis-associated CRCs, chronic inflammation is a contributing factor in carcinogenesis. We recently reported that intestinal Na/H exchanger isoform 8 (NHE8) plays an important role in intestinal mucosal protection and that loss of NHE8 expression results in an ulcerative colitis-like condition.
View Article and Find Full Text PDFBackground: Broad-spectrum antibiotics [Abx], including combination therapy with ciprofloxacin and metronidazole, are often prescribed during the treatment of inflammatory bowel disease [IBD] to alleviate symptoms, but with varying success. In this pilot study, we studied the effects of Abx on the course of experimental colitis, with a particular focus on sex as a determinant of the microbial and inflammatory responses.
Methods: The effects of Abx were tested on colonic inflammation and microbiome in male and female Rag-/- mice, using adoptive transfer of naïve T cells to induce colitis in a short-term [2-week] and long-term [9-week] study.
Intestinal epithelial Na/H exchange facilitated by the apical NHE3 (Slc9a3) is a highly regulated process inhibited by intestinal pathogens and in inflammatory bowel diseases. NHE3 mice develop spontaneous, bacterially mediated colitis, and IBD-like dysbiosis. Disruption of epithelial Na/H exchange in IBD may thus represent a host response contributing to the altered gut microbial ecology, and may play a pivotal role in modulating the severity of inflammation in a microbiome-dependent manner.
View Article and Find Full Text PDFThe Slc9 family of Na /H exchangers (NHEs) plays a critical role in electroneutral exchange of Na and H in the mammalian intestine as well as other absorptive and secretory epithelia of digestive organs. These transport proteins contribute to the transepithelial Na and water absorption, intracellular pH and cellular volume regulation as well as the electrolyte, acid-base, and fluid volume homeostasis at the systemic level. They also influence the function of other membrane transport mechanisms, affect cellular proliferation and apoptosis as well as cell migration, adherence to the extracellular matrix, and tissue repair.
View Article and Find Full Text PDFIndiscriminate use of multivitamin/mineral supplements in the general population may be misguided, but patients with chronic Inflammatory Bowel Diseases (IBD) should be monitored and compensated for nutritional deficiencies. Mechanistic links between vitamin/mineral deficiencies and IBD pathology has been found for some micronutrients and normalizing their levels is clinically beneficial. Others, like vitamin A, although instinctively desirable, produced disappointing results.
View Article and Find Full Text PDFSeveral members of the family of Na/H exchangers are expressed in the gut, with varying expression patterns and cellular localization. Not only do they participate in the regulation of basic epithelial cell functions, including control of transepithelial Na absorption, intracellular pH (pH ), cell volume, and nutrient absorption, but also in cellular proliferation, migration, and apoptosis. Additionally, they modulate the extracellular milieu in order to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2017
It has been hypothesized that apically expressed L-type Ca channel Ca1.3 (encoded by CACNA1D gene) contributes toward an alternative TRPV6-independent route of intestinal epithelial Ca absorption, especially during digestion when high luminal concentration of Ca and other nutrients limit TRPV6 contribution. We and others have implicated altered expression and activity of key mediators of intestinal and renal Ca (re)absorption as contributors to negative systemic Ca balance and bone loss in intestinal inflammation.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
November 2016
Previous studies reported that administration of somatostatin (SST) to human patients mitigated their diarrheal symptoms. Octreotide (an analog of SST) treatment in animals resulted in upregulation of sodium/hydrogen exchanger 8 (NHE8). NHE8 is important for water/sodium absorption in the intestine, and loss of NHE8 function results in mucosal injury.
View Article and Find Full Text PDFVirtually all nutrients from the diet are absorbed into blood across the highly polarized epithelial cell layer forming the small and large intestinal mucosa. Anatomical, histological, and functional specializations along the gastrointestinal tract are responsible for the effective and regulated nutrient transport via both passive and active mechanisms. In this chapter, we summarize the current state of knowledge regarding the mechanism of intestinal absorption of key nutrients such as sodium, anions (chloride, sulfate, oxalate), carbohydrates, amino acids and peptides, lipids, lipid- and water-soluble vitamins, as well as the major minerals and micronutrients.
View Article and Find Full Text PDFInflammatory bowel diseases (IBD) are associated with functional inhibition of epithelial Na+/H+ exchange. In mice, a selective disruption of NHE3 (Slc9a3), a major apical Na+/H+ exchanger, also promotes IBD-like symptoms and gut microbial dysbiosis. We hypothesized that disruption of Na+/H+ exchange is necessary for the development of dysbiosis, which promotes an exacerbated mucosal inflammatory response.
View Article and Find Full Text PDF