Publications by authors named "Faye M Walker"

Article Synopsis
  • Gene expression helps cells adapt to stress, and a specific protein called P-TEFb plays a big role in how cells respond to heat and other stressors.
  • Researchers found that when pediatric brain cancer cells are treated with radiation, P-TEFb helps the cells quickly reorganize their DNA to repair damage and keep living.
  • Blocking P-TEFb while giving radiation treatment weakened the cells’ ability to adapt, making them more likely to die and improving survival time in experiments.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that when cells face stress, they can change how they use their genes to survive. !*
  • They studied brain tumors in kids and saw that a special protein called PTEFb helps cells quickly respond to radiation treatment. !*
  • By blocking PTEFb, the cells can’t adapt as well, leading to more cancer cell death and longer survival for the treated tumors. !*
View Article and Find Full Text PDF

Diffuse midline gliomas (DMGs) are incurable pediatric tumors with extraordinarily limited treatment options. Decades of clinical trials combining conventional chemotherapies with radiation therapy have failed to improve these outcomes, demonstrating the need to identify and validate druggable biologic targets within this disease. NTRK1/2/3 fusions are found in a broad range of pediatric cancers, including high-grade gliomas and a subset of DMGs.

View Article and Find Full Text PDF

Histone 3 gene mutations are the eponymous drivers in diffuse midline gliomas (DMGs), aggressive pediatric brain cancers for which no curative therapy currently exists. These recurrent oncohistones induce a global loss of repressive H3K27me3 residues and broad epigenetic dysregulation. In order to identify therapeutically targetable dependencies within this disease context, we performed an RNAi screen targeting epigenetic/chromatin-associated genes in patient-derived DMG cultures.

View Article and Find Full Text PDF

Advances in nucleic acid amplification technologies have revolutionized diagnostics for systemic, inherited, and infectious diseases. Current assays and platforms, however, often require lengthy experimental procedures and multiple instruments to remove contaminants and inhibitors from clinically-relevant, complex samples. This requirement of sample preparation has been a bottleneck for using nucleic acid amplification tests (NAATs) at the point of care (POC), though advances in "lab-on-chip" platforms that integrate sample preparation and NAATs have made great strides in this space.

View Article and Find Full Text PDF

Biologic drugs are typically manufactured in mammalian host cells, and it is critical from a drug safety and efficacy perspective to detect and remove host cell proteins (HCPs) during production. This is currently achieved with sets of polyclonal antibodies (pAbs), but these suffer from critical shortcomings because their composition is inherently undefined, and they cannot detect nonimmunogenic HCPs. In this work, we report a high-throughput screening and array-based binding characterization strategy that we employed to generate a set of aptamers that overcomes these limitations to achieve sensitive, broad-spectrum detection of HCPs from the widely used Chinese hamster ovary (CHO) cell line.

View Article and Find Full Text PDF

Molecular diagnostics based on the polymerase chain reaction (PCR) offer rapid and sensitive means for detecting infectious disease, but prohibitive costs have impeded their use in resource-limited settings where such diseases are endemic. In this work, we report an innovative method for transforming a desktop computer and a mobile camera phone--devices that have become readily accessible in developing countries--into a highly sensitive DNA detection system. This transformation was achieved by converting a desktop computer into a de facto thermal cycler with software that controls the temperature of the central processing unit (CPU), allowing for highly efficient PCR.

View Article and Find Full Text PDF

Individual genes can be targeted with siRNAs. The use of nucleic acid nanoparticles (NPs) is a convenient method for delivering combinations of specific siRNAs in an organized and programmable manner. We present three assembly protocols to produce two different types of RNA self-assembling functional NPs using processes that are fully automatable.

View Article and Find Full Text PDF

Forked fungus beetles, Bolitotherus cornutus, feed, mate, and live on the brackets of several species of shelf fungus that grow on decaying logs. In response to the specific threat stimulus of mammalian breath, B. cornutus beetles produce a volatile defensive secretion.

View Article and Find Full Text PDF