Most cancers and neoplastic progenitor cells have elevated telomerase activity and preservation of telomeres that promote cellular immortality, making telomerase a rational target for the treatment of cancer. Imetelstat is a first-in-class, 13-mer oligonucleotide that binds with high affinity to the template region of the RNA component of human telomerase and acts as a competitive inhibitor of human telomerase enzymatic activity. Pharmacokinetics, pharmacodynamics, exposure-response analyses, efficacy, and safety of imetelstat have been evaluated in vitro, in vivo, and clinically in solid tumor and hematologic malignancies, including lower-risk myelodysplastic syndromes (LR-MDS) and myeloproliferative neoplasms.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
July 2024
Acute myeloid leukemia (AML) is characterized by poor clinical outcomes due to high rates of relapse following standard-of-care induction chemotherapy. While many pathogenic drivers have been described in AML, our understanding of the molecular mechanisms mediating chemotherapy resistance remains poor. Therefore, we sought to identify resistance genes to induction therapy in AML and elucidated ALOX5 as a novel mediator of resistance to anthracycline-based therapy.
View Article and Find Full Text PDFDrug-induced thrombocytopenia often results from dysregulation of normal megakaryocytopoiesis. In this study, we investigated the mechanisms responsible for thrombocytopenia associated with the use of Panobinostat (LBH589), a histone deacetylase inhibitor with promising anti-cancer activities. The effects of LBH589 were tested on the cellular and molecular aspects of megakaryocytopoiesis by utilizing an ex vivo system in which mature megakaryocytes (MK) and platelets were generated from human primary CD34(+) cells.
View Article and Find Full Text PDF