Publications by authors named "Faye Du"

Immunoglobulin-degrading proteases are secreted by pathogenic bacteria to weaken the host immune response, contributing to immune evasion mechanisms during an infection. Proteases specific to IgG and IgA immunoglobulin classes have previously been identified and characterized, and only a single report exists on a porcine specific IgM-degrading enzyme. It is unclear whether human pathogens also produce enzymes that can break down human IgM.

View Article and Find Full Text PDF

Maple syrup urine disease (MSUD) is an inborn error of branched-chain amino acid metabolism affecting several thousand individuals worldwide. MSUD patients have elevated levels of plasma leucine and its metabolic product α-ketoisocaproate (KIC), which can lead to severe neurotoxicity, coma, and death. Patients must maintain a strict diet of protein restriction and medical formula, and periods of noncompliance or illness can lead to acute metabolic decompensation or cumulative neurological impairment.

View Article and Find Full Text PDF

Classical homocystinuria (HCU) is a rare inborn error of amino acid metabolism characterized by accumulation of homocysteine, an intermediate product of methionine metabolism, leading to significant systemic toxicities, particularly within the vascular, skeletal, and ocular systems. Most patients require lifelong dietary therapy with severe restriction of natural protein to minimize methionine intake, and many patients still struggle to maintain healthy homocysteine levels. Since eliminating methionine from the diet reduces homocysteine levels, we hypothesized that an enzyme that can degrade methionine within the gastrointestinal (GI) tract could help HCU patients maintain healthy levels while easing natural protein restrictions.

View Article and Find Full Text PDF

The hydrolysis of lignocellulosic biomass by degrading enzymes (cellulases) has emerged as a promising process within the bio-ethanol industry. Yet, understanding all the intricacies of how these enzymes work has been a challenging task. Substrate-enzyme interaction in complex feed mixtures, the recalcitrance of the crystalline structure of cellulose and enzyme inactivation by product inhibition, nonproductive binding to lignin, and process stress are only some of the problems standing in the way of creating an effective and efficient process to bio-ethanol production.

View Article and Find Full Text PDF