We previously reported children homozygous for two MC3R sequence variants (C17A+G241A) have greater fat mass than controls. Here we show, using homozygous knock-in mouse models in which we replace murine Mc3r with wild-type human (MC3R(hWT/hWT)) and double-mutant (C17A+G241A) human (MC3R(hDM/hDM)) MC3R, that MC3R(hDM/hDM) have greater weight and fat mass, increased energy intake and feeding efficiency, but reduced length and fat-free mass compared with MC3R(hWT/hWT). MC3R(hDM/hDM) mice do not have increased adipose tissue inflammatory cell infiltration or greater expression of inflammatory markers despite their greater fat mass.
View Article and Find Full Text PDFObjective: Traumatic impacts on the articular joint surface in vitro are known to lead to degeneration of the cartilage. The main objective of this study was to develop a spring-loaded impact device that can be used to deliver traumatic impacts of consistent magnitude and rate and to find whether impacts cause catabolic activities in articular cartilage consistent with other previously reported impact models and correlated with the development of osteoarthritic lesions. In developing the spring-loaded impactor, the operating hypothesis is that a single supraphysiologic impact to articular cartilage in vitro can affect cartilage integrity, cell viability, sulfated glycosaminoglycan and inflammatory mediator release in a dose-dependent manner.
View Article and Find Full Text PDFCartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate hydrogel culture.
View Article and Find Full Text PDFWear debris-induced osteolysis is a major cause of orthopedic implant aseptic loosening, and various cell types, including macrophages, monocytes, osteoblasts, and osteoclasts, are involved. We recently showed that mesenchymal stem/osteoprogenitor cells (MSCs) are another target, and that endocytosis of titanium (Ti) particles causes reduced MSC proliferation and osteogenic differentiation. Here we investigated the mechanistic aspects of the endocytosis-mediated responses of MSCs to Ti particulates.
View Article and Find Full Text PDFThis study examines how variations in the duty cycle (the duration of applied loading) of deformational loading can influence the mechanical properties of tissue engineered cartilage constructs over one month in bioreactor culture. Dynamic loading was carried out with three different duty cycles: 1 h on/1 h off for a total of 3 h loading/day, 3 h continuous loading, or 6 h of continuous loading per day, with all loading performed 5 days/week. All loaded groups showed significant increases in Young's modulus after one month (vs.
View Article and Find Full Text PDFAdult human bone marrow-derived multipotent progenitor cells (MPCs) are able to differentiate into a variety of specialized cell types, including chondrocytes, and are considered a promising candidate cell source for use in cartilage tissue engineering. In this study, we examined the regulation of MPC chondrogenesis by mitogen-activated protein kinases in an attempt to better understand how to generate hyaline cartilage in the laboratory that more closely resembles native tissue. Specifically, we employed the high-density pellet culture model system to assess the roles of ERK5 and ERK1/2 pathway signaling in MPC chondrogenesis.
View Article and Find Full Text PDFIn recent years, there has been a great deal of interest in the development of regenerative approaches to produce hyaline cartilage ex vivo that can be utilized for the repair or replacement of damaged or diseased tissue. It is clinically imperative that cartilage engineered in vitro mimics the molecular composition and organization of and exhibits biomechanical properties similar to persistent hyaline cartilage in vivo. Experimentally, much of our current knowledge pertaining to the regulation of cartilage formation, or chondrogenesis, has been acquired in vitro utilizing high-density cultures of undifferentiated chondroprogenitor cells stimulated to differentiate into chondrocytes.
View Article and Find Full Text PDFCytoskeletal proteins play important regulatory roles in a variety of cellular processes, including proliferation, migration, and differentiation. However, whereas actin and tubulin have established roles regulating developmental chondrogenesis, there is no evidence supporting a function for the intermediate filament vimentin in embryonic cartilage formation. We hypothesized that vimentin may regulate the chondrogenic differentiation of adult multipotent progenitor cells (MPCs), such as those involved in cartilage formation during bone fracture repair.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs), the nonhematopoietic progenitor cells found in various adult tissues, are characterized by their ease of isolation and their rapid growth in vitro while maintaining their differentiation potential, allowing for extensive culture expansion to obtain large quantities suitable for therapeutic use. These properties make MSCs an ideal candidate cell type as building blocks for tissue engineering efforts to regenerate replacement tissues and repair damaged structures as encountered in various arthritic conditions. Osteoarthritis (OA) is the most common arthritic condition and, like rheumatoid arthritis (RA), presents an inflammatory environment with immunological involvement and this has been an enduring obstacle that can potentially limit the use of cartilage tissue engineering.
View Article and Find Full Text PDFObjective: Uterine leiomyoma produce an extracellular matrix (ECM) that is abnormal in its volume, content, and structure. Alterations in ECM can modify mechanical stress on cells and lead to activation of Rho-dependent signaling and cell growth. Here we sought to determine whether the altered ECM that is produced by leiomyoma was accompanied by an altered state of mechanical homeostasis.
View Article and Find Full Text PDFThe anterior cruciate ligament (ACL) inserts into bone through a characteristic fibrocartilagenous interface, which is essential for load transfer between soft and hard tissues. This multi-tissue interface is lost post ACL reconstruction, and the lack of an anatomic fibrocartilage interface between graft and bone remains the leading cause of graft failure. Currently, the mechanism of interface formation is not known.
View Article and Find Full Text PDFCartilage oligomeric matrix protein/thrombospondin 5 (COMP/TSP5) is a major component of the extracellular matrix (ECM) of the musculoskeletal system. Its importance is underscored by its association with several growth disorders. In this report, we investigated its interaction with aggrecan, a major component of cartilage ECM.
View Article and Find Full Text PDFThe triphasic mixture theory has been used to describe the mechanical and physicochemical behaviors of articular cartilage under some specialized loading conditions. However, the mathematical complexities of this theory have limited its applications for theoretical analyses of experimental studies and models for predicting cartilage and other biological tissues' deformational behaviors. A generalized correspondence principle has been established in the present study, and this principle shows that the equilibrium deformational behavior of a charged-hydrated material under loading is identical to that of an elastic medium without charge.
View Article and Find Full Text PDFThe objective of this study was to investigate the effect of chondroitin sulfate (CS)-C on the frictional response of bovine articular cartilage. The main hypothesis is that CS decreases the friction coefficient of articular cartilage. Corollary hypotheses are that viscosity and osmotic pressure are not the mechanisms that mediate the reduction in the friction coefficient by CS.
View Article and Find Full Text PDFNat Clin Pract Rheumatol
July 2006
Articular cartilage, the load-bearing tissue of the joint, has limited repair and regeneration potential. The scarcity of treatment modalities for large chondral defects has motivated attempts to engineer cartilage tissue constructs that can meet the functional demands of this tissue in vivo. Cartilage tissue engineering requires three components: cells, scaffold, and environment.
View Article and Find Full Text PDFInjuries to the anterior cruciate ligament (ACL) often occur at the ligament-to-bone insertion site; thus, an in-depth understanding of the native insertion is critical in identifying the etiology of failure and devising optimal treatment protocols for ACL injuries. The objective of this study is to conduct a systematic characterization of the ACL-to-bone interface, focusing on structural and compositional changes as a function of age. Using a bovine model, three age groups were studied: Neonatal (1-7 days old), Immature (2-6 months old), and Mature (2-5 years old).
View Article and Find Full Text PDFStudy Design: Whole rat intervertebral disc (IVD), as well as the anulus fibrosus (AF) and the nucleus pulposus (NP) were studied using immunoblot, immunohistochemistry, and reverse-transcription followed by polymerase chain reaction (RT-PCR) methods to investigate the expression and distribution of cartilage oligomeric matrix protein (COMP).
Objectives: To investigate the expression and distribution patterns of COMP in normal IVD.
Summary Of Background Data: COMP is an extracellular matrix protein abundantly expressed in articular and growth plate cartilage, as well as bone, ligament, tendon, and synovium.
The specific aim of this study was to investigate the effect of chondroitinase ABC treatment on the frictional response of bovine articular cartilage against glass, under creep loading. The hypothesis is that chondroitinase ABC treatment increases the friction coefficient of bovine articular cartilage under creep. Articular cartilage samples (n = 12) harvested from two bovine knee joints (1-3 months old) were divided into a control group (intact specimens) and a treated group (chondroitinase ABC digestion), and tested in unconfined compression with simultaneous continuous sliding (+/- 4 mm at 1 mm/s) under a constant applied stress of 0.
View Article and Find Full Text PDFCartilage oligomeric matrix protein/thrombospondin 5 (COMP/TSP5) is a major component of the extracellular matrix of the musculoskeletal system. Although COMP/TSP5 abnormalities are associated with several pathological conditions, its normal function remains unclear. This study was undertaken to delineate the function(s) of COMP/TSP5 in cartilage, especially regarding its interaction with chondrocytes.
View Article and Find Full Text PDFArticular cartilage is a hydrated soft tissue composed of negatively charged proteoglycans fixed within a collagen matrix. This charge gradient causes the tissue to imbibe water and swell, creating a net osmotic pressure that enhances the tissue's ability to bear load. In this study we designed and utilized an apparatus for directly measuring the osmotic pressure of chondroitin sulfate, the primary glycosaminoglycan found in articular cartilage, in solution with varying bathing ionic strength (0.
View Article and Find Full Text PDFIt was recently shown experimentally that the friction coefficient of articular cartilage correlates with the interstitial fluid pressurization, supporting the hypothesis that interstitial water pressurization plays a fundamental role in the frictional response by supporting most of the load during the early time response. A recent study showed that enzymatic treatment with chondroitinase ABC causes a decrease in the maximum fluid load support of bovine articular cartilage in unconfined compression. The hypothesis of this study is that treatment with chondroitinase ABC will increase the friction coefficient of articular cartilage in stress relaxation.
View Article and Find Full Text PDFInterstitial fluid pressurization plays an important role in cartilage biomechanics and is believed to be a primary mechanism of load support in synovial joints. The objective of this study was to investigate the effects of enzymatic degradation on the interstitial fluid load support mechanism of articular cartilage in unconfined compression. Thirty-seven immature bovine cartilage plugs were tested in unconfined compression before and after enzymatic digestion.
View Article and Find Full Text PDFAs a nondestructive technique, the indentation test has been used, both in vitro and in vivo, to determine the in situ apparent mechanical properties of cartilage. In this study, a simple new algorithm was developed using the indentation creep test, combined with both biphasic and triphasic analyses to calculate simultaneously the apparent and intrinsic mechanical (aggregate modulus and Poisson's ratio) and an electrochemical properties, i.e.
View Article and Find Full Text PDF