Publications by authors named "Fay T"

Electronic polarization and dispersion are decisive actors in determining interaction energies between molecules. These interactions have a particularly profound effect on excitation energies of molecules in complex environments, especially when the excitation involves a significant degree of charge reorganization. The direct reaction field (DRF) approach, which has seen a recent revival of interest, provides a powerful framework for describing these interactions in quantum mechanics/molecular mechanics (QM/MM) models of systems, where a small subsystem of interest is described using quantum chemical methods and the remainder is treated with a simple MM force field.

View Article and Find Full Text PDF

Robotic surgery has expanded internationally at pace. There are multiple local robotic training pathways but there is inconsistency in standardisation of core common components for curricula internationally. A framework is required to define key objectives that can be implemented across robotic training ecosystems.

View Article and Find Full Text PDF

The chemical reactivity of radical pairs is strongly influenced by the interactions of electronic and nuclear spins. A detailed understanding of these effects requires a quantum description of the spin dynamics that considers spin-dependent reaction rates, interactions with external magnetic fields, spin-spin interactions, and the loss of spin coherence caused by coupling to a fluctuating environment. Modeling real chemical and biochemical systems, which frequently involve radicals with multinuclear spin systems, poses a severe computational challenge.

View Article and Find Full Text PDF

We introduce a general definition of a quantum committor in order to clarify reaction mechanisms and facilitate control in processes where coherent effects are important. With a quantum committor, we generalize the notion of a transition state to quantum superpositions and quantify the effect of interference on the progress of the reaction. The formalism is applicable to any linear quantum master equation supporting metastability for which absorbing boundary conditions designating the reactant and product states can be applied.

View Article and Find Full Text PDF

Electron transfer reactions play an essential role in many chemical and biological processes. Fermi's golden rule (GR), which assumes that the coupling between electronic states is small, has formed the foundation of electron transfer rate theory; however, in short range electron/energy transfer reactions, this coupling can become very large, and, therefore, Fermi's GR fails to make even qualitatively accurate rate predictions. In this paper, I present a simple modified GR theory to describe electron transfer in the Marcus inverted regime at arbitrarily large electronic coupling strengths.

View Article and Find Full Text PDF

Triplet excited state generation plays a pivotal role in photosensitizers, however the reliance on transition metals and heavy atoms can limit the utility of these systems. In this study, we demonstrate that an interplay of competing quantum effects controls the high triplet quantum yield in a prototypical boron dipyrromethene-anthracene (BD-An) donor-acceptor dyad photosensitizer, which is only captured by an accurate treatment of both inner and outer sphere reorganization energies. Our -derived model provides excellent agreement with experimentally measured spectra, triplet yields and excited state kinetic data, including the triplet lifetime.

View Article and Find Full Text PDF

We compare the recently introduced multi-state mapping approach to surface hopping (MASH) with the Förster and Redfield theories of excitation energy transfer. Whereas Förster theory relies on weak coupling between chromophores, and Redfield theory assumes the electronic excitations to be weakly coupled to fast chromophore vibrations, MASH is free from any perturbative or Markovian approximations. We illustrate this with an example application to the rate of energy transfer in a Frenkel-exciton dimer, showing that MASH interpolates correctly between the opposing regimes in which the Förster and Redfield results are reliable.

View Article and Find Full Text PDF

Efficiently balancing photochemistry and photoprotection is crucial for survival and productivity of photosynthetic organisms in the rapidly fluctuating light levels found in natural environments. The ability to respond quickly to sudden changes in light level is clearly advantageous. In the alga Nannochloropsis oceanica we observed an ability to respond rapidly to sudden increases in light level which occur soon after a previous high-light exposure.

View Article and Find Full Text PDF

Polariton chemistry holds promise for facilitating mode-selective chemical reactions, but the underlying mechanism behind the rate modifications observed under strong vibrational coupling is not well understood. Using the recently developed quantum transition path theory, we have uncovered a mechanism of resonant suppression of a thermal reaction rate in a simple model polaritonic system consisting of a reactive mode in a bath confined to a lossless microcavity with a single photon mode. We observed the formation of a polariton during rate-limiting transitions on reactive pathways and identified the concomitant rate suppression as being due to hybridization between the reactive mode and the cavity mode, which inhibits bath-mediated tunneling.

View Article and Find Full Text PDF

In this paper, we outline a physically motivated framework for describing spin-selective recombination processes in chiral systems, from which we derive spin-selective reaction operators for recombination reactions of donor-bridge-acceptor molecules, where the electron transfer is mediated by chirality and spin-orbit coupling. In general, the recombination process is selective only for spin-coherence between singlet and triplet states, and it is not, in general, selective for spin polarization. We find that spin polarization selectivity only arises in hopping-mediated electron transfer.

View Article and Find Full Text PDF

We describe a method for simulating exciton dynamics in protein-pigment complexes, including effects from charge transfer as well as fluorescence. The method combines the hierarchical equations of motion, which are used to describe quantum dynamics of excitons, and the Nakajima-Zwanzig quantum master equation, which is used to describe slower charge transfer processes. We study the charge transfer quenching in light harvesting complex II, a protein postulated to control non-photochemical quenching in many plant species.

View Article and Find Full Text PDF

Importance: Military forces in the State of New York, comprising the Army National Guard, Air National Guard, Naval Militia, and State Guard, with contributions from the Army Corps of Engineers, have made major contributions to the state response to the COVID-19 pandemic.

Observations: Operation COVID-19 began on March 10, 2020, and will continue uninterrupted at least through June 2022, making it the longest and largest domestic mobilization in state history. More than 7000 service members served across 200 COVID-19 mission sites, administering more than 4 million vaccines, producing more than 35 million testing kits, delivering more than 54 million meals, and administering more than 1.

View Article and Find Full Text PDF

The study of open system quantum dynamics has been transformed by the hierarchical equations of motion (HEOM) method, which gives the exact dynamics for a system coupled to a harmonic bath at arbitrary temperature and system-bath coupling strength. However, in its standard form, this method is only consistent with the weak-coupling quantum master equation at all temperatures when many auxiliary density operators are included in the hierarchy, even when low temperature corrections are included. Here, we propose a new low temperature correction scheme for the termination of the hierarchy based on Zwanzig projection, which alleviates this problem and restores consistency with the weak-coupling master equation with a minimal hierarchy.

View Article and Find Full Text PDF

We explore the photoprotection dynamics of Nannochloropsis oceanica using time-correlated single photon counting under regular and irregular actinic light sequences. The varying light sequences mimic natural conditions, allowing us to probe the real-time response of non-photochemical quenching (NPQ) pathways. Durations of fluctuating light exposure during a fixed total experimental time and prior light exposure of the algae are both found to have a profound effect on NPQ.

View Article and Find Full Text PDF

Objective: We aimed to identify positive change within the NHS as a result of the COVID-19 pandemic by assessing staff views on re-deployment, wellbeing and workplace satisfaction.

Design: An anonymous questionnaire was sent out to medical staff working across four major NHS trusts using SurveyMonkey.

Setting: We surveyed staff working in NHS trusts across London and the surrounding areas.

View Article and Find Full Text PDF

Here we propose a mechanism by which spin-polarization can be generated dynamically in chiral molecular systems undergoing photoinduced electron transfer. The proposed mechanism explains how spin-polarization emerges in systems where charge transport is dominated by incoherent hopping, mediated by spin-orbit and electronic exchange couplings through an intermediate charge transfer state. We derive a simple expression for the spin-polarization that predicts a nonmonotonic temperature dependence, consistent with recent experiments, and a maximum spin-polarization that is independent of the magnitude of the spin-orbit coupling.

View Article and Find Full Text PDF

We show that the stochastic Schrödinger equation (SSE) provides an ideal way to simulate the quantum mechanical spin dynamics of radical pairs. Electron spin relaxation effects arising from fluctuations in the spin Hamiltonian are straightforward to include in this approach, and their treatment can be combined with a highly efficient stochastic evaluation of the trace over nuclear spin states that is required to compute experimental observables. These features are illustrated in example applications to a flavin-tryptophan radical pair of interest in avian magnetoreception and to a problem involving spin-selective radical pair recombination along a molecular wire.

View Article and Find Full Text PDF

Recently, there has been much interest in the chirality-induced spin selectivity effect, whereby electron spin polarization, which is dependent on molecular chirality, is produced in electrode-molecule electron transfer processes. Naturally, one might consider if a similar effect can be observed in simple molecular charge transfer reactions, for example, in light-induced electron transfer from an electron donor to an electron acceptor. In this work, I explore the effect of electron transfer on spins in chiral single radicals and chiral radical pairs using Nakajima-Zwanzig theory.

View Article and Find Full Text PDF

Radical pair recombination reactions are known to be sensitive to extremely weak magnetic fields and can therefore be said to function as molecular magnetoreceptors. The classic example is a carotenoid-porphyrin-fullerene (CPF) radical pair that has been shown to provide a "proof-of-principle" for the operation of a chemical compass [K. Maeda et al.

View Article and Find Full Text PDF

Relaxation processes can have a large effect on the spin selective electron transfer reactions of radical pairs. These processes are often treated using phenomenological relaxation superoperators or with some model for the microscopic relaxation mechanism treated within Bloch-Redfield-Wangsness theory. Here, we demonstrate that an alternative perturbative relaxation theory, based on the Nakajima-Zwanzig equation, has certain advantages over Redfield theory.

View Article and Find Full Text PDF