Publications by authors named "Fawzy M Hashem"

Urea-nitrogen (N) is commonly applied to crop fields, yet it is not routinely monitored despite its association with reduced water quality and its ability to increase toxicity of certain phytoplankton species. The purpose of this work was to characterize temporal fluctuations in urea-N concentrations and associated environmental conditions to infer sources of urea-N in agricultural drainage ditches. Physicochemical properties and N forms in ditch waters were measured weekly during the growing seasons of 2015-2018.

View Article and Find Full Text PDF

Agricultural drainage ditches represent a major source of nutrient pollution. Shifts in nitrogen source and use of animal manures have changed the bacterial composition both in species of bacteria and their abundance in agricultural ditches. This change affects how nitrogen is being cycled and potentially the final forms of available nutrients.

View Article and Find Full Text PDF

Urea-N is linked to harmful algal blooms in lakes and estuaries, and urea-N-based fertilizers have been implicated as a source. However, the export of urea-N-based fertilizers appears unlikely, as high concentrations of urea-N are most commonly found in surface waters outside periods of fertilization. To evaluate possible autochthonous production of urea-N, we monitored urea-N released from drainage ditch sediments using mesocosms.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies indicate a strong link between high urea concentrations and the occurrence of harmful algal blooms (HABs) in regions like the Chesapeake Bay, largely due to increased agricultural nitrogen inputs.
  • The research involved rainfall simulations to evaluate how different nitrogen fertilizers and manure contribute to urea runoff, finding that under certain conditions, about 1% of applied urea-N was lost shortly after application.
  • Overall nitrogen losses from runoff were relatively low (less than 5% of total applied N), suggesting that most nitrogen was either lost through other means or held in the soil, highlighting the importance of effective management practices to reduce urea runoff.
View Article and Find Full Text PDF

Herbaceous bioenergy crops, including sorghum, switchgrass, and miscanthus, were evaluated for their potential as phytoremediators for the uptake of phosphorus in the Delmarva Peninsula and their subsequent conversion to biofuel intermediates (bio-oil) by fast pyrolysis using pyrolysis-gas chromatography/mass spectroscopy. Four cultivars of sorghum, five cultivars of switchgrass and one miscanthus (Miscanthus × giganteus) were grown in soils with two different levels of poultry manure (PM) applications. Little variation was seen in phosphorus uptake in the two different soils indicating that the levels of available phosphorus in the soil already saturated the uptake ability of the plants.

View Article and Find Full Text PDF

Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms.

View Article and Find Full Text PDF

The objective of this study was to develop and validate secondary models that can predict growth parameters of L. monocytogenes Scott A as a function of concentrations (0-3%) of a commercial potassium lactate (PL) and sodium diacetate (SDA) mixture, pH (5.5-7.

View Article and Find Full Text PDF