Iron oxide nanoparticles (IONPs) synthesized via thermal decomposition find diverse applications in biomedicine owing to precise control of their physico-chemical properties. However, use in such applications requires phase transfer from organic solvent to water, which remains a bottleneck. Through the thermal decomposition of iron oleate (FeOl), we systematically investigate the impact of synthesis conditions such as oleic acid (OA) amount, temperature increase rate, dwell time, and solvent on the size, magnetic saturation, and crystallinity of IONPs.
View Article and Find Full Text PDFPhiladelphia-positive (Ph+) leukemia is a type of blood cancer also known as acute lymphoblastic leukemia (ALL), affecting 20-30% of adults diagnosed worldwide and having an engraved prognosis as compared to other types of leukemia. The current treatment regimens mainly rely on tyrosine kinase inhibitors (TKIs) and bone marrow transplants. To date, several generations of TKIs have been developed due to associated resistance and frequent relapse, with cardiovascular system anomalies being the most devastating complication.
View Article and Find Full Text PDFExosomes are nanoscale extracellular vesicles which regulate intercellular communication. They have great potential for application in nanomedicine. However, techniques for their isolation are limited by requirements for advanced instruments and costly reagents.
View Article and Find Full Text PDFExosome application has emerged as a promising nanotechnology discipline for various diseases therapeutics and diagnoses. Owing to the natural properties of efficient drug delivery, higher biocompatibility, facile traversing of physiological barriers, and subtle side effects, exosomes shorten their way to clinical translation. Exosomes are nanoscale membrane-bound vesicles primarily involved in intercellular communication and exhibit natural blood-brain barrier (BBB) traversing ability, which enables their application as drug delivery vehicles for brain diseases treatment.
View Article and Find Full Text PDFSelective targeting of elevated copper (Cu) in cancer cells by chelators to induce tumor-toxic reactive oxygen species (ROS) may be a promising approach in the treatment of glioblastoma multiforme (GBM). Previously, the Cu chelator di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) attracted much interest due to its potent anti-tumor activity mediated by the formation of a highly redox-active Cu-Dp44mT complex. However, its translational potential was limited by the development of toxicity in murine models of cancer reflecting poor selectivity.
View Article and Find Full Text PDFGlioblastoma (GBM) is among the most treatment-resistant solid tumors and often recurrs after resection. One of the mechanisms through which GBM escapes various treatment modalities is the overexpression of anti-apoptotic Bcl-2 family proteins (., Bcl-2, Bcl-xl, and Mcl-1) in tumor cells.
View Article and Find Full Text PDFGlioblastoma (GBM) is a highly fatal and recurrent brain cancer without a complete prevailing remedy. Although the synthetic nanotechnology-based approaches exhibit excellent therapeutic potential, the associated cytotoxic effects and organ clearance failure rest major obstacles from bench to clinics. Here, we explored allogeneic bone marrow mesenchymal stem cells isolated exosomes (BMSC) decorated with heme oxygenase-1 (HMOX1) specific short peptide (HSSP) as temozolomide (TMZ) and small interfering RNA (siRNA) nanocarrier for TMZ resistant glioblastoma therapy.
View Article and Find Full Text PDFCorrection for 'SERS-based nanostrategy for rapid anemia diagnosis' by Pir Muhammad , , 2020, , 1948-1957, DOI: 10.1039/C9NR09152A.
View Article and Find Full Text PDFTherapy against cancer remains a daunting issue for human health, despite remarkable innovations in many areas of pathology. In situ biosynthesized nanoclusters bestow a novel remedy for carcinogenic cell imaging. Exosomes have received special attention as an efficient tool for the diagnosis of various diseases, including cancers.
View Article and Find Full Text PDFBio-nanotechnology based cancer therapeutics exponentially increase every year. A therapeutic strategy to induce intracellular reactive oxygen species (ROS) has received promising success in oncotherapy. In this study, the new strategy has been exploited by the treatment of iridium (Ir) and Fe ions with cancer cells to biosynthesize the biocompatible fluorescent iridium oxide (IrO) and iron oxide nanoclusters (NCs) under the specific redox heterogeneous microenvironment of these diseased cells and tumors.
View Article and Find Full Text PDFCentral nervous system (CNS) disorders represent a broad spectrum of brain ailments with short- and long-term disabilities, and nanomedicine-based approaches provide a new therapeutic approach to treating CNS disorders. A variety of potential drugs have been discovered to treat several neuronal disorders; however, their therapeutic success can be limited by the presence of the blood-brain barrier (BBB). Furthermore, unique immune functions within the CNS provide novel target mechanisms for the amelioration of CNS diseases.
View Article and Find Full Text PDFRecently, exosomes have gained attention as an effective tool for early cancer detection. Almost all types of cells release exosomes, making them substantially important for disease diagnosis. In this study, we have utilized HepG2 cancer cells for the in situ biosynthesis of silver and iron oxide nanoclusters (NCs) from their respective salts (i.
View Article and Find Full Text PDFIron detection is one of the critical markers to diagnose multiple blood-related disorders that correspond to various biological dysfunctions. The currently available anemia detection approach can be used only for pre-treated blood samples that interfere with the actual iron level in blood. Real-time detection approaches with higher sensitivity and specificity are certainly needed to cope with the commercial level clinical analyses.
View Article and Find Full Text PDFThe zinc oxide nanomaterials (ZnO-NMs), owing to their broad biomedical applications have lately attracted the incredible interest in the development of therapeutic agents against microbial infections. In this contribution, we have biosynthesized ZnO-NMs with a size of ˜ 40 nm from the Bougainvillea flower extracts. The FTIR and SEM-EDX mapping analysis confirmed the size, shape and biogenic origin of ZnO-NPs.
View Article and Find Full Text PDFProduction of nanoscale materials often requires the use of toxic chemicals and complex synthetic procedures. A new scaffold has been explored for in situ synthesis of nanomaterials that utilizes natural biological systems in the form of plants, bacteria, fungi, algae and redox-imbalanced mammalian cells and systems. The latter approach has become popular in recent years and has shown some promising results in bioimaging of cancer, as well as inflammatory and neurodegenerative maladies.
View Article and Find Full Text PDFTimely detection is crucial for successful treatment of cancer. The current study describes a new approach that involves utilization of the tumor cell environment for bioimaging with in-situ biosynthesized nanoscale gold and iron probes and subsequent dissemination of Au-Fe nanoclusters from cargo exosomes within the circulatory system. We have isolated the Au-Fe cargo exosomes from the blood of the treated murine models after in situ biosyntheses from their respective pre-ionic solutions (HAuCl, FeCl), whereas NaSeO supplementation added into Au lethal effect.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2018
Multimodal bioimaging is a powerful tool for visualizing the abnormal state at the target site of the related disease. In this study, we used multimodal imaging techniques such as computed tomography, fluorescence, and magnetic resonance imaging to improve early and precise diagnosis of tumor. Herein, we reported the facile in situ biosynthesis of iridium and iron oxide nanoclusters (NCs) in cancer cells or tumor tissue.
View Article and Find Full Text PDFA novel dopamine biosensor based on carbon fiber microelectrodes (CFMEs) modified with copper(I) sulfide functionalized nanocomposites of the reduced graphene oxide (Cu2S/RGO) has been explored for the sensitive detection of dopamine and in vivo monitoring the neurotransmitters released by Drosophila's brain. The as-prepared Cu2S/RGO decorated microelectrodes were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Our observations demonstrate that Cu2S/RGO-CFMEs exhibited excellent catalytic activity and high selectivity for dopamine with relatively low detection limit (24 nM), wide linear range (i.
View Article and Find Full Text PDFAlzheimer's disease is still incurable and neurodegenerative, and there is a lack of detection methods with high sensitivity and specificity. In this study, by taking different month old Alzheimer's mice as models, we have explored the possibility of the target bioimaging of diseased sites through the initial injection of zinc gluconate solution into Alzheimer's model mice post-tail vein and then the combination of another injection of ferrous chloride (FeCl) solution into the same Alzheimer's model mice post-stomach. Our observations indicate that both zinc gluconate solution and FeCl solution could cross the blood-brain barrier (BBB) to biosynthesize the fluorescent zinc oxide nanoclusters and magnetic iron oxide nanoclusters, respectively, in the lesion areas of the AD model mice, thus enabling high spatiotemporal dual-modality bioimaging (i.
View Article and Find Full Text PDFBiomedical applications of nanomaterials are exponentially increasing every year due to analogy to various cell receptors, ligands, structural proteins, and genetic materials (that is, DNA). In bone tissue, nanoscale materials can provide scaffold for excellent tissue repair via mechanical stimulation, releasing of various loaded drugs and mediators, 3D scaffold for cell growth and differentiation of bone marrow stem cells to osteocytes. This review will therefore highlight recent advancements on tissue and nanoscale materials interaction.
View Article and Find Full Text PDFCancer treatment has a far greater chance of success if the neoplasm is diagnosed before the onset of metastasis to vital organs. Hence, cancer early diagnosis is extremely important and remains a major challenge in modern therapeutics. In this contribution, facile and new method for rapid multimodal tumor bioimaging is reported by using biosynthesized iron complexes and gold nanoclusters via simple introduction of AuCl and Fe ions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2015
This work presents a new strategy of the combination of surface plasmon resonance (SPR) and electrochemical study for real-time evaluation of live cancer cells treated with daunorubicin (DNR) at the interface of the SPR chip and living cancer cells. The observations demonstrate that the SPR signal changes could be closely related to the morphology and mass changes of adsorbed cancer cells and the variation of the refractive index of the medium solution. The results of light microscopy images and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide studies also illustrate the release or desorption of HepG2 cancer cells, which were due to their apoptosis after treatment with DNR.
View Article and Find Full Text PDFBackground: Tetra Sulphonatophenyl Porphyrin (TSPP) is well known photosensitizer for photodynamic therapy; nevertheless, its well-known adverse effects hamper its potential use. Recently, nano TiO2's potential role in biomedical has been defined for various disease theranostics, including cancer and other infections. Thus, in this contribution we have explored the possibility of utilizing TiO2 nanowhiskers as novel strategy to lower TSPP adverse effects both in vitro, and in vivo.
View Article and Find Full Text PDFSince Rheumatoid arthritis (RA) is one of the major human joint diseases with unknown etiology, the early diagnosis and treatment of RA remains a challenge. In this contribution we have explored the possibility to utilize novel nanocomposites of tetera suplhonatophenyl porphyrin (TSPP) with titanium dioxide (TiO2) nanowhiskers (TP) as effective bio-imaging and photodynamic therapeutic (PDT) agent for RA theranostics. Our observations demonstrate that TP solution PDT have an ameliorating effect on the RA by decreasing significantly the IL-17 and TNF-α level in blood serum and fluorescent imaging could enable us to diagnose the disease in subclinical stages and bio-mark the RA insulted joint.
View Article and Find Full Text PDF