Publications by authors named "Fawad Mansoor"

Bovine Respiratory Disease (BRD) is a major source of economic loss within the agricultural industry. Vaccination against BRD-associated viruses does not offer complete immune protection and vaccine failure animals present potential routes for disease spread. Serological differentiation of infected from vaccinated animals (DIVA) is possible using antigen-deleted vaccines, but during virus outbreaks DIVA responses are masked by wild-type virus preventing accurate serodiagnosis.

View Article and Find Full Text PDF

Background: There is a need to improve vaccination against respiratory pathogens in calves by stimulation of local immunity at the site of pathogen entry at an early stage in life. Ideally such a vaccine preparation would not be inhibited by the maternally derived antibodies. Additionally, localized immune response at the site of infection is also crucial to control infection at the site of entry of virus.

View Article and Find Full Text PDF

Vaccination procedures within the cattle industry are important disease control tools to minimize economic and welfare burdens associated with respiratory pathogens. However, new vaccine, antigen and carrier technologies are required to combat emerging viral strains and enhance the efficacy of respiratory vaccines, particularly at the point of pathogen entry. New technologies, specifically metabolomic profiling, could be applied to identify metabolite immune-correlates representative of immune protection following vaccination aiding in the design and screening of vaccine candidates.

View Article and Find Full Text PDF

Vaccine adjuvants are typically designed to stimulate both systemic and mucosal immune responses. Polymeric nanoparticles have been used as adjuvants in the development of vaccines against a number of viral pathogens and tested in laboratory animals. The objective of the study was to assess if synthetic bovine parainfluenza virus type-3 (BPI3V) peptide motifs and solubilised BPI3V proteins encapsulated in poly (dl-lactic-co-glycolide) (PLGA) nanoparticles (NPs) induce specific humoral immune responses in a mouse model following intranasal administration.

View Article and Find Full Text PDF