ΔfosB is an alternatively spliced product of the FosB gene that is essential for dopamine-induced reward pathways and that acts as a master switch for addiction. However, the molecular mechanisms of its generation and regulation by dopamine signaling are unknown. Here, we report that dopamine D1 receptor signaling synergizes with the activin/ALK4/Smad3 pathway to potentiate the generation of ΔFosB mRNA in medium spiny neurons (MSNs) of the nucleus accumbens (NAc) via activation of the RNA-binding protein PCBP1, a regulator of mRNA splicing.
View Article and Find Full Text PDFThe medial habenula (mHb) is an understudied small brain nucleus linking forebrain and midbrain structures controlling anxiety and fear behaviors. The mechanisms that maintain the structural and functional integrity of mHb neurons and their synapses remain unknown. Using spatiotemporally controlled Cre-mediated recombination in adult mice, we found that the glial cell-derived neurotrophic factor receptor alpha 1 (GFRα1) is required in adult mHb neurons for synaptic stability and function.
View Article and Find Full Text PDFAttention deficit/Hyperactivity disorder (ADHD) is one of the most diagnosed psychiatric disorders nowadays. The core symptoms of the condition include hyperactivity, impulsiveness and inattention. The main pharmacological treatment consists of psychostimulant drugs affecting Dopamine Transporter (DAT) function.
View Article and Find Full Text PDFAdaptation to nutrient availability is crucial for survival. Upon nutritional stress, such as during prolonged fasting or cold exposure, organisms need to balance the feeding of tissues and the maintenance of body temperature. The mechanisms that regulate the adaptation of brown adipose tissue (BAT), a key organ for non-shivering thermogenesis, to variations in nutritional state are not known.
View Article and Find Full Text PDFAlthough the role of transcription factors in fate specification of cortical interneurons is well established, how these interact with extracellular signals to regulate interneuron development is poorly understood. Here we show that the activin receptor ALK4 is a key regulator of the specification of somatostatin interneurons. Mice lacking ALK4 in GABAergic neurons of the medial ganglionic eminence (MGE) showed marked deficits in distinct subpopulations of somatostatin interneurons from early postnatal stages of cortical development.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFMAG (Myelin-associated glycoprotein) is a type I transmembrane glycoprotein expressed by Schwann cells and oligodendrocytes, that has been implicated in the control of axonal growth in many neuronal populations including cerebellar granule neurons (CGNs). However, it is unclear whether MAG has other functions in central nervous system, in particular, in cerebellar development and patterning. We find that MAG expression in the cerebellum is compartmentalised resulting in increased MAG protein levels in the cerebellar white matter.
View Article and Find Full Text PDFPsychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant's effects on dendritic spines in hippocampus remain unknown.
View Article and Find Full Text PDFCyclin-dependent kinase 5/p35 kinase complex plays a critical role in dopaminergic neurotransmission. Dysregulation of dopamine (DA) signaling is associated with neurological and neuropsychiatric disorders. As cyclin-dependent kinase 5 (Cdk5) requires association with p35 for its proper activation, we hypothesized that dysregulation of Cdk5 activity might have an effect on striatal-mediated behavior.
View Article and Find Full Text PDFThe cellular and molecular mechanisms of sensitization in the addictive process are still unclear. Recently, chronic treatment with cocaine has been shown to upregulate the expression of cyclin-dependent kinase 5 (cdk5) and its specific activator, p35, in the striatum, as a downstream target gene of DeltaFosB, and has been implicated in compensatory adaptive changes associated with psychostimulants. Cdk5 is a serine/threonine kinase and its activation is achieved through association with a regulatory subunit, either p35 or p39.
View Article and Find Full Text PDF