We compared therapeutic properties of natural and engineered chemokine (C-X-C motif) receptor 4 (CXCR4) agonists in a rat acute respiratory distress syndrome (ARDS) model utilizing the PaO/FiO-ratio as a clinically relevant primary outcome criterion. Ventilated rats underwent unilateral lung ischemia from t = 0-70 min plus hemorrhage to a mean arterial blood pressure (MAP) of 30 mmHg from t = 40-70 min, followed by reperfusion/fluid resuscitation until t = 300 min. Natural CXCR4 agonists (CXCL12, ubiquitin) and engineered CXCL12 variants (CXCL12, CXCL2, CXCL12K27A/R41A/R47A, CXCL12 (3-68)) were administered within 5 min of fluid resuscitation.
View Article and Find Full Text PDFRecently, we demonstrated that Kv7 voltage-activated potassium channel inhibitors reduce fluid resuscitation requirements in short-term rat models of haemorrhagic shock. The aim of the present study was to further delineate the therapeutic potential and side effect profile of the Kv7 channel blocker linopirdine in various rat models of severe haemorrhagic shock over clinically relevant time periods. Intravenous administration of linopirdine, either before (1 or 3 mg/kg) or after (3 mg/kg) a 40% blood volume haemorrhage, did not affect blood pressure and survival in lethal haemorrhage models without fluid resuscitation.
View Article and Find Full Text PDFActivation of C-X-C motif chemokine receptor 4 (CXCR4) has been reported to result in lung protective effects in various experimental models. The effects of pharmacological CXCR4 modulation on the development of acute respiratory distress syndrome (ARDS) after lung injury, however, are unknown. Thus, we studied whether blockade and activation of CXCR4 influences development of ARDS in a unilateral lung ischaemia-reperfusion injury rat model.
View Article and Find Full Text PDF