Synapses are organized into nanocolumns that control synaptic transmission efficacy through precise alignment of postsynaptic neurotransmitter receptors and presynaptic release sites. Recent evidence show that Leucine-Rich Repeat Transmembrane protein LRRTM2, highly enriched and confined at synapses, interacts with Neurexins through its C-terminal cap, but the role of this binding interface has not been explored in synapse formation and function. Here, we develop a conditional knock-out mouse model (cKO) to address the molecular mechanisms of LRRTM2 regulation, and its role in synapse organization and function.
View Article and Find Full Text PDFCognitive impairments have been reported in astronauts during spaceflights and documented in ground-based models of simulated microgravity (SMG) in animals. However, the neuronal causes of these behavioral effects remain largely unknown. We explored whether adult neurogenesis, known to be a crucial plasticity mechanism supporting memory processes, is altered by SMG.
View Article and Find Full Text PDFHomeostatic synaptic plasticity is a process by which neurons adjust their synaptic strength to compensate for perturbations in neuronal activity. Whether the highly diverse synapses on a neuron respond uniformly to the same perturbation remains unclear. Moreover, the molecular determinants that underlie synapse-specific homeostatic synaptic plasticity are unknown.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent that has caused the current coronavirus disease (COVID) pandemic. Viral infection relies on the viral S (spike) protein/cellular receptor ACE2 interaction. Disrupting this interaction would lead to early blockage of viral replication.
View Article and Find Full Text PDFExtracellular vesicles or EVs are secreted by most, if not all, eukaryote cell types and recaptured by neighboring or distant cells. Their cargo, composed of a vast diversity of proteins, lipids, and nucleic acids, supports the EVs' inter-cellular communication. The role of EVs in many cellular processes is now well documented both in physiological and pathological conditions.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent responsible for the recent coronavirus disease 2019 (COVID-19) pandemic. Productive SARS-CoV-2 infection relies on viral entry into cells expressing angiotensin-converting enzyme 2 (ACE2). Indeed, viral entry into cells is mostly mediated by the early interaction between the viral spike protein S and its ACE2 receptor.
View Article and Find Full Text PDFIn the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein-coupled receptors (GPCRs). Receptor interaction with partner proteins has emerged as a novel mechanism to alter GPCR signaling in pathophysiological conditions. We propose here that GABAB activity is inhibited through the specific binding of fibulin-2, an extracellular matrix protein, to the B1a subunit in a rat model of neuropathic pain.
View Article and Find Full Text PDFHomeostatic plasticity is a form of plasticity in which neurons compensate for changes in neuronal activity through the control of key physiological parameters such as the number and the strength of their synaptic inputs and intrinsic excitability. Recent studies revealed that miRNAs, which are small non-coding RNAs repressing mRNA translation, participate in this process by controlling the translation of multiple effectors such as glutamate transporters, receptors, signaling molecules and voltage-gated ion channels. In this review, we present and discuss the role of miRNAs in both cell-wide and compartmentalized forms of homeostatic plasticity as well as their implication in pathological processes associated with homeostatic failure.
View Article and Find Full Text PDFIn the central nervous system (CNS), miRNAs are involved in key functions, such as neurogenesis and synaptic plasticity. Moreover, they are essential to define specific transcriptomes in tissues and cells. However, few studies were performed to determine the miRNome of the different structures of the rat CNS, although a major model in neuroscience.
View Article and Find Full Text PDFPain is associated with negative emotions such as anxiety, but the underlying neurocircuitry and modulators of the association of pain and anxiety remain unclear. The neuropeptide cholecystokinin (CCK) has both pronociceptive and anxiogenic properties, so we explored the role of CCK in anxiety and nociception in the central amygdala (CeA), a key area in control of emotions and descending pain pathways. Local infusion of CCK into the CeA of control rats increased anxiety, as measured in the light-dark box test, but had no effect on mechanical sensitivity.
View Article and Find Full Text PDFOxaliplatin is a platinum-based drug used in the treatment of gastric cancers. Oxaliplatin treatment induces sensory neuropathy characterized by cold hypersensibility in the acute phase and sensory impairment when the neuropathy becomes chronic. In order to determine the effect of oxaliplatin on sensory neurons, we used an in vitro model in which oxaliplatin treatment reduced arborization of dorsal root ganglia neurons in a dose-dependent manner.
View Article and Find Full Text PDFInflammatory pain is a complex and multifactorial disorder. Apurinic/apyrimidinic endonuclease 1 (APE1), also called Redox Factor-1 (Ref-1), is constitutively expressed in the central nervous system and regulates various cellular functions including oxidative stress. In the present study, we investigated APE1 modulation and associated pain behavior changes in the complete Freund's adjuvant (CFA) model of inflammatory pain in rats.
View Article and Find Full Text PDFThe dorsal horn of the spinal cord is a crucial site for pain transmission and modulation. Dorsal horn neurons of the spinal cord express group I metabotropic glutamate receptors (group I mGluRs) that exert a complex role in nociceptive transmission. In particular, group I mGluRs promote the activation of L-type calcium channels, voltage-gated channels involved in short- and long-term sensitization to pain.
View Article and Find Full Text PDFStrong breakthrough pain is one of the most disabling symptoms of cancer since it affects up to 90% of cancer patients and is often refractory to treatments. Alteration in gene expression is a known mechanism of cancer pain in which microRNAs (miRNAs), a class of non-coding regulatory RNAs, play a crucial role. Here, in a mouse model of cancer pain, we show that miR-124 is down-regulated in the spinal cord, the first relay of the pain signal to the brain.
View Article and Find Full Text PDFChronic pain is a major public health issue with an incidence of 20-25% worldwide that can take different forms like neuropathic, cancer-related or inflammatory pain. Chronic pain often limits patients in their daily activities leading to despair. Thus, the goal of treatments is to relieve pain sufficiently to enable patients to go back to a normal life.
View Article and Find Full Text PDFMutations in the GBA1 gene encoding the lysosomal enzyme glucocerebrosidase (GBA1) are important risk factors for Parkinson's disease (PD). In vitro, altered GBA1 activity promotes alpha-synuclein accumulation whereas elevated levels of alpha-synuclein compromise GBA1 function, thus supporting a pathogenic mechanism in PD. However, the mechanisms by which GBA1 deficiency is linked to increased risk of PD remain elusive, partially because of lack of aged models of GBA1 deficiency.
View Article and Find Full Text PDFKey Points: L-type calcium channels in the CNS exist as two subunit forming channels, Cav1.2 and Cav1.3, which are involved in short- and long-term plasticity.
View Article and Find Full Text PDFWe investigated whether microRNAs could regulate AMPA receptor expression during activity blockade. miR-92a strongly repressed the translation of GluA1 receptors by binding the 3' untranslated region of rat GluA1 (also known as Gria1) mRNA and was downregulated in rat hippocampal neurons after treatment with tetrodotoxin and AP5. Deleting the seed region in GluA1 or overexpressing miR-92a blocked homeostatic scaling, indicating that miR-92a regulates the translation and synaptic incorporation of new GluA1-containing AMPA receptors.
View Article and Find Full Text PDFFront Cell Neurosci
March 2014
MicroRNAs (miRNAs) are emerging as master regulators of gene expression in the nervous system where they contribute not only to brain development but also to neuronal network homeostasis and plasticity. Their function is the result of a cascade of events including miRNA biogenesis, target recognition, and translation inhibition. It has been suggested that miRNAs are major switches of the genome owing to their ability to regulate multiple genes at the same time.
View Article and Find Full Text PDFBackground: Epidermal growth factor (EGF) receptors contribute to the development of malignant glioma. Here we considered the possible implication of the EGFR ligand epiregulin (EREG) in glioma development in relation to the activity of the unfolded protein response (UPR) sensor IRE1α. We also examined EREG status in several glioblastoma cell lines and in malignant glioma.
View Article and Find Full Text PDFNeuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain, and non-coding RNAs - and microRNAs (miRNAs) in particular - regulate both immune and neuronal processes. Specifically, miRNAs control macromolecular complexes in neurons, glia and immune cells and regulate signals used for neuro-immune communication in the pain pathway. Therefore, miRNAs may be hypothesized as critically important master switches modulating chronic pain.
View Article and Find Full Text PDFIn the spinal nerve ligation (SNL) model of neuropathic pain, synaptic plasticity shifts the excitation/inhibition balance toward excitation in the spinal dorsal horn. We investigated the deregulation of the synaptogenic neuroligin (NL) molecules, whose NL1 and NL2 isoforms are primarily encountered at excitatory and inhibitory synapses, respectively. In the dorsal horn of SNL rats, NL2 was overexpressed whereas NL1 remained unchanged.
View Article and Find Full Text PDFIn the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein-coupled receptors (GPCRs). However, the regulation of GABAB dimerization, and more generally of GPCR oligomerization, remains largely unknown. We propose a novel mechanism for inhibition of GPCR activity through de-dimerization in pathological conditions.
View Article and Find Full Text PDF