Covalent modification of histones is an important tool for gene transcriptional control in eukaryotes, which coordinates growth, development, and adaptation to environmental changes. In recent years, an important role for monoubiquitination of histone 2B (H2B) has emerged in plants, where it is associated with transcriptional activation. In this review, we discuss the dynamics of the H2B monoubiquitination system in plants and its role in regulating developmental processes including flowering, circadian rhythm, photomorphogenesis, and the response to abiotic and biotic stress including drought, salinity, and fungal, bacterial, and viral pathogens.
View Article and Find Full Text PDFGeminiviruses are a major threat to agriculture in tropical and subtropical regions of the world. Geminiviruses have small genome with limited coding capacity. Despite this limitation, these viruses have mastered hijacking the host cellular metabolism for their survival.
View Article and Find Full Text PDFBackground: Alphasatellites are small coding DNA satellites frequently associated with a begomovirus/betasatellite complex, where they are known to modulate virulence and symptom development. Two distinct alphasatellites, namely, Cotton leaf curl Multan alphasatellite (CLCuMuA), and Gossypium darwinii symptomless alphasatellite (GDarSLA) associated with Cotton leaf curl Multan virus-India (CLCuMuV-IN) and Ludwigia leaf distortion betasatellite (LuLDB) were found to be associated with yellow mosaic disease of hollyhock (Alcea rosea) plants. In this study, we show that alphasatellites CLCuMuA and GDarSLA attenuate and delay symptom development in Nicotiana benthamiana.
View Article and Find Full Text PDFNucleosomes are assembled or disassembled with the aid of histone chaperones in a cell. Viruses can exist either as minichromosomes/episomes or can integrate into the host genome and in both the cases the viral proteins interact and manipulate the cellular nucleosome assembly machinery to ensure their survival and propagation. Recent studies have provided insight into the mechanism and role of histone chaperones in nucleosome assembly and disassembly on the virus genome.
View Article and Find Full Text PDFGeminiviruses constitute one of the largest families of plant viruses and they infect many economically important crops. The proteins encoded by the single-stranded DNA genome of these viruses interact with a wide range of host proteins to cause global dysregulation of cellular processes and help establish infection in the host. Geminiviruses have evolved numerous mechanisms to exploit host epigenetic processes to ensure the replication and survival of the viral genome.
View Article and Find Full Text PDFRice tungro disease is caused by a complex of two viruses, Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV). To examine the RNAi-based defence response in rice during tungro disease, we characterized the virus-derived small RNAs and miRNAs by Deep Sequencing. We found that, while 21 nt/22 nt (nucleotide) siRNAs are predominantly produced in a continuous, overlapping and asymmetrical manner from RTBV, siRNA accumulation from RTSV were negligible.
View Article and Find Full Text PDF