Publications by authors named "Fausto Roberto Mendez de la Cruz"

Reptiles, as ectothermic organisms, rely on environmental temperatures for optimal physiological performance. The thermal requirements for optimal locomotion in reptiles can severely affect their reproduction. However, some species are successful in environments with temperatures exceeding 40 °C.

View Article and Find Full Text PDF

Temperature is a key abiotic factor that influences performance of several physiological traits in ectotherms. Organisms regulate their body temperature within a range of temperatures to enhance physiological function. The capacity of ectotherms, such as lizards, to maintain their body temperature within their preferred range influences physiological traits such as speed, various reproductive patterns, and critical fitness components, such as growth rates or survival.

View Article and Find Full Text PDF

The variation in temperament among animals has consequences for evolution and ecology. One of the primary effects of consistent behavioral differences is on reproduction. In chelonians some authors have focused on the study of temperament using different methods.

View Article and Find Full Text PDF

Nuclear and mitochondrial genomes coexist within cells but are subject to different tempos and modes of evolution. Evolutionary forces such as drift, mutation, selection, and migration are expected to play fundamental roles in the origin and maintenance of diverged populations; however, divergence may lag between genomes subject to different modes of inheritance and functional specialization. Herein, we explore whole mitochondrial genome data and thousands of nuclear single nucleotide polymorphisms to evidence extreme mito-nuclear discordance in the small black-tailed brush lizard, Urosaurus nigricaudus, of the Peninsula of Baja California, Mexico and southern California, USA, and discuss potential drivers.

View Article and Find Full Text PDF

Although the importance of thermoregulation and plasticity as compensatory mechanisms for climate change has long been recognized, they have largely been studied independently. Thus, we know comparatively little about how they interact to shape physiological variation in natural populations. Here, we test the hypothesis that behavioral thermoregulation and thermal acclimatization interact to shape physiological phenotypes in a natural population of the diurnal lizard, Sceloporus torquatus.

View Article and Find Full Text PDF

Activity patterns in ectotherms rely on the structure of the thermal environment and thermoregulatory opportunities during activity periods. A dichotomy between diurnal and nocturnal ectotherms is not clear in every case, and temperature can directly affect the daily activity period in these organisms during both photophase and scotophase. In the present study we evaluate the thermal ecology of six tropical night lizards (genus Lepidophyma) from Mexico.

View Article and Find Full Text PDF

Home range is defined as the area within which an individual moves to acquire resources necessary to increase their fitness and may vary inter and intra-specifically with biotic and abiotic factors. This study details the home range of the parthenogenic lizard, Aspidoscelis cozumela, an active forager microendemic to Cozumel Island, México, with high preference for open sand beaches. The home range of A.

View Article and Find Full Text PDF

Oviparous species of exhibit either seasonal or continuous spermatogenesis and populations from high-elevation show a seasonal pattern known as spring reproductive activity. We studied the spermatogenic cycle of a high-elevation (2700 m) population of endemic oviparous lizard, , that resided south of México, D.F.

View Article and Find Full Text PDF

Previous studies using mitochondrial DNA (mtDNA) genes suggest the black-tailed brush lizard, Urosaurus nigricaudus, which is a small-sized lizard from the peninsula of Baja California, Mexico, has 4 deeply isolated mtDNA lineages with sequence divergence ranging from 4% to 11.2%. We present its complete mitochondrial genome.

View Article and Find Full Text PDF