Publications by authors named "Faugel H"

A novel approach for density measurements at the edge of a hot plasma device is presented-Microwave Interferometer in the Limiter Shadow (MILS). The diagnostic technique is based on measuring the change in phase and power of a microwave beam passing tangentially through the edge plasma, perpendicular to the background magnetic field. The wave propagation involves varying combinations of refraction, phase change, and further interference of the beam fractions.

View Article and Find Full Text PDF

An ion cyclotron emission (ICE) diagnostic is prepared for installation into the W7-X stellarator, with the aim to be operated in the 2022 experimental campaign. The design is based on the successful ICE diagnostic on the ASDEX Upgrade tokamak. The new diagnostic consists of four B-dot probes, mounted about 72° toroidally away (one module) from the neutral beam injector, with an unobstructed plasma view.

View Article and Find Full Text PDF

An ongoing objective in the ion cyclotron range of frequencies (ICRF) systems is the improvement of power coupling to the plasma. During the last decade, this goal has been mainly pursued through the study of the coupling resistance, either by optimizing the antenna layout or by tailoring the scrape-off layer profile with gas puffing. Another approach is to increase the voltage handling capability of the ICRF system, limited by breakdown in the launchers or in the transmission lines.

View Article and Find Full Text PDF

This manuscript presents a new method of interpreting the ion temperature (T) measurement with a retarding field analyzer (RFA) that accounts for the intermittent/turbulent nature of the scrape off layer (SOL) plasmas in tokamaks. Fast measurements and statistical methods are desirable for an adequate description of random fluctuations caused by such intermittent events as edge localized modes (ELMs) and blobs. We use a RFA that can sweep its current-voltage (I-V) characteristics with up to 10 kHz.

View Article and Find Full Text PDF

Existence of high electric fields near an RF antenna launcher causes a number of parasitic phenomena, such as arcing and impurity release, which seriously deteriorate the performance of an Ion Cyclotron Range of Frequencies (ICRF) heating scheme in fusion devices. Limited accessibility of the near antenna region in large-scale fusion experiments significantly complicates the associated experimental studies. The IShTAR test facility has been developed with the requirement to provide a better accessibility and diagnosability of plasmas in the direct vicinity of an ICRF antenna.

View Article and Find Full Text PDF

The B-dot probe diagnostic suite on the ASDEX Upgrade tokamak has recently been upgraded with a new 125 MHz, 14 bit resolution digitizer to study ion cyclotron emission (ICE). While classic edge emission from the low field side plasma is often observed, we also measure waves originating from the core with fast fusion protons or beam injected deuterons being a possible emission driver. Comparing the measured frequency values with ion cyclotron harmonics present in the plasma places the origin of this emission on the magnetic axis, with the fundamental hydrogen/second deuterium cyclotron harmonic matching the observed values.

View Article and Find Full Text PDF

The measurement of the relative phase of two sinusoidal electrical signals is a frequently encountered task in heterodyne interferometry, but also occurs in many other applications. Especially in interferometry, multi-radian detectors are often required, which track the temporal evolution of the phase difference and are able to register phase changes that exceed 2π. While a large variety of solutions to this problem is already known, we present an alternative approach, which pre-processes the signals with simple analog circuitry and digitizes two resulting voltages with an analog-to-digital converter (ADC), whose sampling frequency can be far below the frequency of the sinusoidal signals.

View Article and Find Full Text PDF

A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 10 m, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna.

View Article and Find Full Text PDF

A new array of B-dot probes was installed on ASDEX Upgrade. The purpose of the new diagnostic is to study Ion Cyclotron Range-off Frequencies (ICRF) wave field distributions in the evanescent scrape-off layer (SOL) plasma region on the low field side of ASDEX Upgrade. The vacuum measurements (no gas, B = 0 T) reveal ICRF wave field measurements consistent with the profiles expected from the newly installed 3-strap ICRF antennas outside the antenna box: the shape of the toroidal distribution of both the amplitude and the phase is the same for the case of only the central straps being active, as for the case of only the side straps being active.

View Article and Find Full Text PDF

A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k(//)) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided.

View Article and Find Full Text PDF