Over the last decade, CDK4/6 inhibitors (palbociclib, ribociclib and abemaciclib) have emerged as promising anticancer drugs. Numerous studies have demonstrated that CDK4/6 inhibitors efficiently block the pRb-E2F pathway and induce cell cycle arrest in pRb-proficient cells. Based on these studies, the inhibitors have been approved by the FDA for treatment of advanced hormonal receptor (HR) positive breast cancers in combination with hormonal therapy.
View Article and Find Full Text PDFDNA replication must be faithful and follow a well-defined spatiotemporal program closely linked to transcriptional activity, epigenomic marks, intranuclear structures, mutation rate and cell fate determination. Among the readouts of the spatiotemporal program of DNA replication, replication timing analyses require not only complex and time-consuming experimental procedures, but also skills in bioinformatics. We developed a dedicated Shiny interactive web application, the START-R (Simple Tool for the Analysis of the Replication Timing based on R) suite, which analyzes DNA replication timing in a given organism with high-throughput data.
View Article and Find Full Text PDFDevelopmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562-3468).
View Article and Find Full Text PDFHigh proliferation rate and high mutation density are both indicators of poor prognosis in adrenocortical carcinomas. We performed a hypothesis-driven association study between clinical features in adrenocortical carcinomas and the expression levels of 136 genes involved in DNA metabolism and G1/S phase transition. In 79 samples downloaded from The Cancer Genome Atlas portal, high ( mRNA levels gave the most significant association with shorter time to relapse and poorer survival of patients.
View Article and Find Full Text PDFAutism spectrum disorders (ASD) are characterized by a wide genetic and clinical heterogeneity. However, some biochemical impairments, including decreased melatonin (crucial for circadian regulation) and elevated platelet N-acetylserotonin (the precursor of melatonin) have been reported as very frequent features in individuals with ASD. To address the mechanisms of these dysfunctions, we investigated melatonin synthesis in post-mortem pineal glands - the main source of melatonin (9 patients and 22 controls) - and gut samples - the main source of serotonin (11 patients and 13 controls), and in blood platelets from 239 individuals with ASD, their first-degree relatives and 278 controls.
View Article and Find Full Text PDFDuring the S-phase, the DNA replication process is finely orchestrated and regulated by two programs: the spatial program that determines where replication will start in the genome (Cadoret et al. (2008 Oct 14), Cayrou et al. (2011 Sep), Picard et al.
View Article and Find Full Text PDFPrimary ovarian insufficiency (POI) results in an early loss of ovarian function, and remains idiopathic in about 80% of cases. Here, we have performed a complete genetic study of a consanguineous family with two POI cases. Linkage analysis and homozygosity mapping identified 12 homozygous regions with linkage, totalling 84 Mb.
View Article and Find Full Text PDFTwo areas of the occipitotemporal cortex show a remarkable hemispheric lateralization: written words activate the visual word form area (VWFA) in the left fusiform gyrus and faces activate a symmetrical site in the right hemisphere, the fusiform face area (FFA). While the lateralization of the VWFA fits with the leftward asymmetry of the speech processing network, origin of the rightward asymmetry for faces is still unclear. Using fMRI data from 64 subjects (including 16 monozygotic (MZ) and 13 dizygotic (DZ) twin pairs), we investigated how activations evoked by written words, faces, and spoken language are co-lateralized in the temporal lobe, and whether this organization reflects genetic factors or individual reading expertise.
View Article and Find Full Text PDFDyslexia is one of the most common childhood disorders with a prevalence of around 5-10% in school-age children. Although an important genetic component is known to have a role in the aetiology of dyslexia, we are far from understanding the molecular mechanisms leading to the disorder. Several candidate genes have been implicated in dyslexia, including DYX1C1, DCDC2, KIAA0319, and the MRPL19/C2ORF3 locus, each with reports of both positive and no replications.
View Article and Find Full Text PDFAutism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism.
View Article and Find Full Text PDFRecent advances have been made in the genetics of two human communication skills: speaking and reading. Mutations of the FOXP2 gene cause a severe form of language impairment and orofacial dyspraxia, while single-nucleotide polymorphisms (SNPs) located within a KIAA0319/TTRAP/THEM2 gene cluster and affecting the KIAA0319 gene expression are associated with reading disability. Neuroimaging studies of clinical populations point to partially distinct cerebral bases for language and reading impairments.
View Article and Find Full Text PDFBackground: Autism spectrum disorders (ASD) are a group of severe childhood neurodevelopmental disorders with still unknown etiology. One of the most frequently reported associations is the presence of recurrent de novo or inherited microdeletions and microduplications on chromosome 16p11.2.
View Article and Find Full Text PDFN-acetyl serotonin methyl transferase (ASMT) is the last enzyme in the melatonin synthesis pathway. Evidence linking autism-related disorders with disorders of melatonin metabolism, and, more specifically, with mutations of the gene encoding ASMT, prompted us to investigate the properties and localization of this enzyme. As a first step, we undertook to overproduce the protein in a recombinant host.
View Article and Find Full Text PDFAutism spectrum disorders (ASD) are characterized by impairments in reciprocal social communication, and repetitive, stereotyped verbal and non-verbal behaviors. Genetic studies have provided a relatively large number of genes that constitute a comprehensive framework to better understand this complex and heterogeneous syndrome. Based on the most robust findings, three observations can be made.
View Article and Find Full Text PDFBackground: Autism spectrum disorders (ASD) are severe neurodevelopmental disorders with the male:female ratio of 4:1, implying the contribution of X chromosome genetic factors to the susceptibility of ASD. The ribosomal protein L10 (RPL10) gene, located on chromosome Xq28, codes for a key protein in assembling large ribosomal subunit and protein synthesis. Two non-synonymous mutations of RPL10, L206M and H213Q, were identified in four boys with ASD.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
September 2008
Autism spectrum disorders (ASD) are complex genetic disorders more frequently observed in males. Skewed X chromosome inactivation (XCI) is observed in heterozygous females carrying gene mutations involved in several X-linked syndromes. In this study, we aimed to estimate the role of X-linked genes in ASD susceptibility by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 163 affected girls.
View Article and Find Full Text PDFMelatonin is produced in the dark by the pineal gland and is a key regulator of circadian and seasonal rhythms. A low melatonin level has been reported in individuals with autism spectrum disorders (ASD), but the underlying cause of this deficit was unknown. The ASMT gene, encoding the last enzyme of melatonin synthesis, is located on the pseudo-autosomal region 1 of the sex chromosomes, deleted in several individuals with ASD.
View Article and Find Full Text PDFSHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage-sensitive synaptic pathway that is involved in autism spectrum disorders.
View Article and Find Full Text PDFDoublecortin (DCX) is a microtubule-associated protein involved in neuronal migration, which causes X-linked lissencephaly and subcortical laminar heterotopia (SCLH) when mutated. Here we show that DCX interacts with the ubiquitin-specific protease Drosophila fat facets related on X chromosome (DFFRX). This interaction was confirmed by targeted mutagenesis, colocalization, and immunoprecipitation studies.
View Article and Find Full Text PDFRecent human genetic approaches showed that mutations in three genes encoding OPHN1, PAK3, and alphaPIX cause nonspecific X-linked mental retardation. These three proteins act to modulate Rho GTPase signaling pathways and may participate in neuronal morphogenesis by regulating the actin cytoskeleton. Here we showed that the Oligophrenin-1 gene is expressed in the developing spinal cord and later in brain areas that are characterized by high synaptic plasticity.
View Article and Find Full Text PDFPreviously, human genetics-based approaches allowed us to show that mutations in the IL-1 receptor accessory protein-like gene (IL1RAPL) are responsible for a non-specific form of X-linked mental retardation. This gene encodes a predicted protein of 696 amino acids that belongs to a novel class of the IL-1/Toll receptor family. In addition to the extracellular portion consisting of three Ig-like domains and the intracellular TIR domain characteristic of the IL-1/Toll receptor family, IL1RAPL contains a specific 150 amino acid carboxy terminus that has no significant homology with any protein of known function.
View Article and Find Full Text PDFType I lissencephaly is a cortical malformation disorder characterized by disorganized cortical layers and gyral abnormalities and associated with severe cognitive impairment and epilepsy. The exact pathophysiological mechanisms underlying the epilepsy and mental retardation in this and related disorders remain unknown. Two genes, LIS1 and doublecortin, have both been shown to be mutated in a large proportion of cases of type I lissencephaly and a milder allelic disorder, subcortical laminar heterotopia (SCLH).
View Article and Find Full Text PDF