Publications by authors named "Fatouros D"

Background/objectives: Exosomes, nano-sized extracellular vesicles released by all cells, play a key role in intercellular communication and carry tumorigenic properties that impact surrounding or distant cells. The complexity of the exosomal molecular interactome and its effects on recipient cells still remain unclear. This study aims to decipher the molecular profile and interactome of lung adenocarcinoma A549 cell-derived exosomes using multi-omics and bioinformatics approaches.

View Article and Find Full Text PDF

Introduction: Α customized organ-on-a-chip microfluidic device was developed for dynamic culture of oral mucosa equivalents (Oral_mucosa_chip-OMC).

Materials And Methods: Additive Manufacturing (AM) was performed via stereolithography (SLA) printing. The dimensional accuracy was evaluated via microfocus computed tomography (mCT), the surface characteristics via scanning electron microscopy (SEM), while the mechanical properties via nanoindentation and compression tests.

View Article and Find Full Text PDF

Ensuring children adhere to their prescribed medication can be challenging, particularly when a large number of medicines on the market consist of unpalatable drugs and difficult to swallow dosage forms. Sugar-based oromucosal films are easy to administer dosage forms across all age groups within the paediatric population, as they eliminate the need for swallowing or water intake and can contribute to enhancing palatability and medicine adherence. In the current study, electrospun and 3D printed oromucosal films of chlorpromazine hydrochloride (CHZ), a bitter drug, were developed based on pullulan, a natural polysaccharide, and an array of sweeteners.

View Article and Find Full Text PDF

In the present study, a customized device (Epi-ExPer) was designed and fabricated to facilitate an epithelial organ culture, allowing for controlled exposure to exogenous chemical stimuli and accommodating the evaluation of permeation of the tissue after treatment. The Epi-ExPer system was fabricated using a stereolithography (SLA)-based additive manufacturing (AM) method. Human and porcine oral epithelial mucosa tissues were inserted into the device and exposed to resinous monomers commonly released by dental restorative materials.

View Article and Find Full Text PDF

Cannabis seed oil oleogel structured with Glycerol Monostearate (20% /) was mixed with xanthan gum hydrogel (2% /) at different ratios ranging from 0% / hydrogel to 75% / hydrogel, using a syringe-to-syringe apparatus, for the preparation of 3D-printable food inks. This process enabled the simultaneous blend of oleogel and hydrogel phases and the incorporation of air in a reproducible and accurate manner. The printability of bigel inks with different mass ratios was evaluated by using a conventional benchtop food 3D printer.

View Article and Find Full Text PDF

The role and opportunities presented by particulate technologies (due to novel processing methods and advanced materials) have multiplied over the last few decades, leading to promising and ideal properties for drug delivery. For example, the dissolution and bioavailability of poorly soluble drug substances and achieving site- specific drug delivery with a desired release profile are crucial aspects of forming (to some extent) state-of-the-art platforms. Atomisation techniques are intended to achieve efficient control over particle size, improved processing time, improved drug loading efficiency, and the opportunity to encapsulate a broad range of viable yet sensitive therapeutic moieties.

View Article and Find Full Text PDF

Tissue-engineered oral epithelium (ΤΕΟΕ) was developed after comparing various culture conditions, including submerged (SUB) and air-liquid interface (ALI) human cell expansion options. Barrier formation was evaluated via transepithelial electrical resistance (TEER) and calcein permeation via spectrofluorometry. TEOE was further assessed for long-term viability via live/dead staining and development of intercellular connections via transmission electron microscopy.

View Article and Find Full Text PDF

3D-printed dosage forms comprised of Carbopol and Eudragit were fabricated through semi-solid extrusion, combining Enoxaparin (Enox) and the permeation enhancer SNAC in a single-step process without subsequent post-processing. Inks were characterized using rheology and Fourier-transform infrared (FTIR) spectroscopy. The stability of Enox in the fabricated dosage forms was assessed by means of Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) analysis.

View Article and Find Full Text PDF
Article Synopsis
  • This research explores 3D-printed antifungal buccal films (BFs) made from a zein-PVP polymer blend as a possible substitute for traditional antifungal oral gels, highlighting their ease of manufacturing and suitability for children.
  • The films provide sustained release, with 80% of the drug miconazole being released over 2 hours, and disintegrate in under 10 minutes while adhering to buccal tissue.
  • Comprehensive evaluations confirm the films' physicochemical stability, mucoadhesion, and effective antifungal activity, making them a promising option for treating fungal infections in the oral cavity.
View Article and Find Full Text PDF

Microneedle (MN) patches are gaining increasing attention as a cost-effective technology for delivering drugs directly into the skin. In the present study, two different 3D printing processes were utilized to produce coated MNs, namely, digital light processing (DLP) and semisolid extrusion (SSE). Donepezil (DN), a cholinesterase inhibitor administered for the treatment of Alzheimer's disease, was incorporated into the coating material.

View Article and Find Full Text PDF

The theoretical interpretation of the vaginal permeability phenomenon, the evaluation of the suitability of five artificial membranes, and the prediction of the behaviors of vaginal drugs were the main objectives of this study. Franz vertical diffusion cells and different validated HPLC methods were used to measure the permeability of six vaginally administered drugs (econazole, miconazole, metronidazole, clindamycin, lidocaine, and nonoxynol-9). This study was performed (in vitro) on different membranes of polyvinylidene fluoride (PVDF), plain cellulose or cellulose impregnated with isopropyl myristate (IPM), and cellulose combined with PVDF or IPM.

View Article and Find Full Text PDF

In the current study, coated microneedle arrays were fabricated by means of digital light processing (DLP) printing. Three different shapes were designed, printed, and coated with PLGA particles containing two different actives. Rivastigmine (RIV) and N-acetyl-cysteine (NAC) were coformulated via electrohydrodynamic atomization (EHDA), and they were incorporated into the PLGA particles.

View Article and Find Full Text PDF

Polypharmacy is a common issue, especially among elderly patients resulting in administration errors and patient inconvenience. Hypertension is a prevalent health condition that frequently leads to polypharmacy, as its treatment typically requires the co-administration of more than one different Active Pharmaceutical Ingredients (API's). To address these issues, floating hollow torus-shaped dosage forms were developed, aiming at providing prolonged gastric retention and sustained drug release.

View Article and Find Full Text PDF

Rheological analysis of citrus pectin at pH 3 and 7 elucidates its structural dynamics, revealing distinct behaviors influenced by pH. At pH 3, pectin exhibits shear-thinning, with solvent-independent unified rheological profiles identifying three concentration regimes: 0.5%-1.

View Article and Find Full Text PDF

Capsaicin (CAP) has been implicated as a gastroprotective agent in the treatment of peptic ulcers. However, its oral administration is hampered by its poor aqueous solubility and caustic effect at high administered doses. To address these limitations, we describe the development of gastric floating, sustained release electrospun films loaded with CAP.

View Article and Find Full Text PDF

Plastics are ubiquitously, becoming part of our everyday life. Recently, the issue of human exposure to micro- and nanoplastic particles and potentially resulting toxicological consequences has been broached, triggered by the discovery of microplastics in foodstuff and dietary exposure via contaminated food and beverages. Within this EU-FORA fellowship project, a determination and quantification of plastic polyester plastics oligomers in food samples was performed to assess exposure at these categories of 'nanoplastics', evaluating them as potential contaminants or as indicators and marker compounds of the exposure to specific nanoplastics/microplastics from polyesters, such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT).

View Article and Find Full Text PDF

Homotaurine (HOM) is considered a promising drug for the treatment of Alzheimer's and other neurodegenerative diseases. In the present work, a new high-performance liquid chromatography with fluorescence detection (HPLC-FLD) (λex. = 340 nm and λem.

View Article and Find Full Text PDF

Introduction: Medication errors during drug manipulations in pediatric care pose significant challenges to patient safety and optimal medication management. Epidemiological studies have revealed a high prevalenceof medication errors throughout the medication process. Due to the lack of age-appropriate dosage forms, medication manipulation is common in pediatric drug administration.

View Article and Find Full Text PDF

Buccal foams containing omeprazole (OME) have been developed as potential drug delivery systems for individuals encountering swallowing difficulties, particularly pediatric and geriatric patients. The buccal foams were formulated from lyophilized aqueous gels of maltodextrin, used as a sweetener, combined with various polymers (alginate, chitosan, gelatin, tragacanth) to fine tune their structural, mechanical, and physicochemical properties. Consistent with the requirements for efficient drug delivery across buccal epithelium, the foam comprised of hydroxypropyl methylcellulose and alginate (HPMC-Alg-OME), exhibited moderate hardness and high mucoadhesion resulting to prolonged residence and increased transport of the active across porcine epithelium.

View Article and Find Full Text PDF

In the present study, two different microneedle devices were produced using digital light processing (DLP). These devices hold promise as drug delivery systems to the buccal tissue as they increase the permeability of actives with molecular weights between 600 and 4000 Da. The attached reservoirs were designed and printed along with the arrays as a whole device.

View Article and Find Full Text PDF

Purpose: The aim of this study was to evaluate the polymerization efficiency of a preheated resin composite used as a luting agent for indirect restorations light-cured by a blue diode laser (445 nm).

Methods: Bronze molds were used to prepare cylindrical specimens of a laboratory composite (Ceramage) with dimensions 2, 3, and 4 mm in height and 8 mm in diameter. The molds had additional height of 120 μm for the placement of the preheated resin composite.

View Article and Find Full Text PDF

Continuing what previous studies had also intended, the present study aims to shed light on some unanswered questions concerning a recently introduced class of high drug loading (HD) amorphous solid dispersions (ASDs), based on the in-situ thermal crosslinking of poly (acrylic acid) (PAA) and poly (vinyl alcohols) (PVA). Initially, the effect of supersaturated dissolution conditions on the kinetic solubility profiles of the crosslinked HD ASDSs having indomethacin (IND) as a model drug, was determined. Subsequently, the safety profile of these new crosslinked formulations was determined for the first time by evaluating their cytotoxic effect on human intestinal epithelia cell line (Caco-2), while their ex-vivo intestinal permeability was also studied via the non-everted gut sac method.

View Article and Find Full Text PDF

Objective: Vaginal administration is an important alternative to the oral route for both topical and systemic use. Therefore, the development of reliable in silico methods for the study of drugs permeability is becoming popular in order to avoid time-consuming and costly experiments.

Methods: In the current study, Franz cells and appropriate HPLC or ESI-Q/MS analytical methods were used to experimentally measure the apparent permeability coefficient () of 108 compounds (drugs and non-drugs).

View Article and Find Full Text PDF

Poorly water-soluble drugs are frequently formulated with lipid-based formulations including microemulsions and their preconcentrates. We detailed the solidification of drug-loaded microemulsion preconcentrates with the acid-sensitive metal-organic framework ZIF-8 by X-ray powder diffraction and solid-state nuclear magnetic resonance spectroscopy. Adsorption and desorption dynamics were analyzed by fluorescence measurement, high-performance liquid chromatography, dynamic light scattering and H-DOSY experiments using the model compounds Nile Red, Vitamin K, and Lumefantrine.

View Article and Find Full Text PDF

Semi-solid extrusion (SSE) 3D printing technology was utilized for the encapsulation of octreotide acetate (OCT) into 3D-printed oral dosage forms in ambient conditions. The inks and the OCT-loaded 3D-printed oral dosage forms were characterized by means of rheology, Fourier-transform infrared (FTIR) spectroscopy and Nuclear Magnetic Resonance (NMR). In vitro studies demonstrated that the formulations released OCT in a controlled manner.

View Article and Find Full Text PDF