Publications by authors named "Fatouma Said-Hassane"

Click chemistry represents a new bioconjugation strategy that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition which can be performed under mild experimental conditions in aqueous media. Here we describe the application of a model click reaction to the conjugation, in a single step, of unprotected α-1-thiomannosyl ligands, functionalized with an azide group, to liposomes containing a terminal alkyne-functionalized lipid anchor.

View Article and Find Full Text PDF

The "Golden era" of antibiotics is definitely an old story and this is especially true for intracellular bacterial infections. The poor intracellular bioavailability of antibiotics reduces the efficency of many treatments and thereby promotes resistances. Therefore, the development of nanodevices coupled with antibiotics that are capable of targeting and releasing the drug into the infected-cells appears to be a promising solution to circumvent these complications.

View Article and Find Full Text PDF

We describe here new nanoparticles based on the bioconjugation of penicillin G to squalene in order to overcome severe intracellular infections by pathogen bacteria whose mechanism of resistance arises from the poor intracellular diffusion of several antibiotics. Two different squalene-penicillin G conjugates were synthesized (pH-sensitive and pH-insensitive), and their self-assembly as nanoparticles was investigated through morphology and stability studies. These nanoparticles had a size of 140 ± 10 nm (polydispersity index of 0.

View Article and Find Full Text PDF

Progress in our understanding of the molecular pathogenesis of human malignancies has provided therapeutic targets amenable to oligonucleotide (ON)-based strategies. Antisense ON-mediated splicing regulation in particular offers promising prospects since the majority of human genes undergo alternative splicing and since splicing defects have been found in many diseases. However, their implementation has been hampered so far by the poor bioavailability of nucleic acids-based drugs.

View Article and Find Full Text PDF

Conjugates of cell-penetrating peptides (CPP) and splice redirecting oligonucleotides (ON) display clinical potential as attested by in vivo experimentation in murine models of Duchenne muscular dystrophy. However, micromolar concentrations of these conjugates are required to obtain biologically relevant responses as a consequence of extensive endosomal sequestration following endocytosis. Recent work from our group has demonstrated that appending stearic acid to CPPs increases their efficiency and that the inclusion of pH titrable entities leads to further improvement.

View Article and Find Full Text PDF

While small interfering RNAs (siRNAs) have been rapidly appreciated to silence genes, efficient and non-toxic vectors for primary cells and for systemic in vivo delivery are lacking. Several siRNA-delivery vehicles, including cell-penetrating peptides (CPPs), have been developed but their utility is often restricted by entrapment following endocytosis. Hence, developing CPPs that promote endosomal escape is a prerequisite for successful siRNA implementation.

View Article and Find Full Text PDF

Several strategies based on synthetic oligonucleotides (ON) have been proposed to control gene expression. As for most biomolecules, however, delivery has remained a major roadblock for in vivo applications. Conjugation of steric-block neutral DNA mimics, such as peptide nucleic acids (PNA) or phosphorodiamidate morpholino oligonucleotides (PMO), to cell-penetrating peptides (CPP) has recently been proposed as a new delivery strategy.

View Article and Find Full Text PDF

Schistosomiasis is a major tropical parasitic disease. For its treatment, praziquantel remains the only effective drug available and the dependence on this sole chemotherapy emphasizes the urgent need for new drugs to control this neglected disease. In this context, the newly characterized Schistosoma mansoni NAD(+) catabolizing enzyme (SmNACE) represents a potentially attractive drug target.

View Article and Find Full Text PDF

Click chemistry represents a new bioconjugation strategy that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition, which can be performed under mild experimental conditions in aqueous media. Here, we describe the application of a model click reaction to the conjugation, in a single step of unprotected alpha-1-thiomannosyl ligands, functionalized with an azide group to liposomes containing a terminal alkyne-functionalized lipid anchor.

View Article and Find Full Text PDF

The full therapeutic potential of oligonucleotide (ON)-based agents has been hampered by cellular delivery challenges. Cell-penetrating peptides (CPP) represent promising delivery vectors for nucleic acids, and their potential has recently been evaluated using a functional splicing redirection assay, which capitalizes on the nuclear delivery of splice-correcting steric-block ON analogues such as peptide nucleic acids (PNA). Despite encouraging in vitro and in vivo data with arginine-rich CPP-steric block conjugates, mechanistic studies have shown that entrapment within the endosome/lysosome compartment after endocytosis remains a limiting factor.

View Article and Find Full Text PDF

We have designed chemically defined diepitope constructs consisting of liposomes displaying at their surface synthetic oligosaccharides mimicking the O-antigen of the Shigella flexneri 2a lipopolysaccharide (B-cell epitope) and influenza hemagglutinin peptide HA 307-319 (Th epitope). Using well controlled and high-yielding covalent bioconjugation reactions, the two structurally independent epitopes were coupled to the lipopeptide Pam(3)CAG, i.e.

View Article and Find Full Text PDF

An efficient and convenient chemoselective conjugation method based on "click chemistry" was developed for coupling ligands to the surface of preformed liposomes. It can be performed under mild conditions in aqueous buffers; the use of a water soluble Cu(I) chelator, such as bathophenanthrolinedisulfonate, was essential to obtain good yields in reasonable reaction times. A model reaction was achieved in which, in a single step, an unprotected alpha-D-mannosyl derivative carrying a spacer arm functionalized with an azide group was conjugated to the surface of vesicles presenting a synthetic lipid carrying a terminal alkyne function.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Fatouma Said-Hassane"

  • - Fatouma Said-Hassane's research focuses on innovative bioconjugation methods and delivery systems for improving the efficacy of therapeutic agents in treating intracellular infections and diseases, particularly through the use of nanotechnology and cell-penetrating peptides.
  • - Her work includes the development of click chemistry for ligand attachment to liposome surfaces, enhancing drug delivery mechanisms, and creating self-assembled nanoparticles to overcome antibiotic resistance in bacterial infections.
  • - Additionally, Said-Hassane has explored the role of splice redirecting oligonucleotides in gene therapy, demonstrating the potential of chemically modified delivery vectors to improve cellular uptake and therapeutic outcomes in both in vitro and in vivo models.

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3rb12a6k5v06q65k0u960ksklbkvt63b): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once