Publications by authors named "Fatme Jardali"

Building artificial neurons and synapses is key to achieving the promise of energy efficiency and acceleration envisioned for brain-inspired information processing. Emulating the spiking behavior of biological neurons in physical materials requires precise programming of conductance nonlinearities. Strong correlated solid-state compounds exhibit pronounced nonlinearities such as metal-insulator transitions arising from dynamic electron-electron and electron-lattice interactions.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have focused on the unique properties of silicon nanoparticles, particularly their permanent electric dipole moments, primarily in small silicon nanoclusters (SiNCs) around 1-2 nanometers in size.
  • This study investigates whether plasma conditions can create larger silicon clusters (superclusters) with stronger dipole moments using a pulsed plasma method for SiNC production.
  • The findings showed that 1-2 nm SiNCs can form larger superclusters, which have high dipole moments, enabling their orientation and manipulation with external electric fields for advanced nanostructure applications.
View Article and Find Full Text PDF

Plasma-based NO synthesis the Birkeland-Eyde process was one of the first industrial nitrogen fixation methods. However, this technology never played a dominant role for nitrogen fixation, due to the invention of the Haber-Bosch process. Recently, nitrogen fixation by plasma technology has gained significant interest again, due to the emergence of low cost, renewable electricity.

View Article and Find Full Text PDF

Silicon-based anode fabrication with nanoscale structuration improves the energy density and life cycle of Li-ion batteries. As-synthesized silicon (Si) nanowires (NWs) or nanoparticles (NPs) directly on the current collector represent a credible alternative to conventional graphite anodes. However, the operating potentials of these electrodes are below the electrochemical stability window of all electrolytes used in commercial Li-ion systems.

View Article and Find Full Text PDF

Ammonia is an industrial large-volume chemical, with its main application in fertilizer production. It also attracts increasing attention as a green-energy vector. Over the past century, ammonia production has been dominated by the Haber-Bosch process, in which a mixture of nitrogen and hydrogen gas is converted to ammonia at high temperatures and pressures.

View Article and Find Full Text PDF

Epitaxial silicon thin films grown from the deposition of plasma-born hydrogenated silicon nanoparticles using plasma-enhanced chemical vapor deposition have widely been investigated due to their potential applications in photovoltaic and nanoelectronic device technologies. However, the optimal experimental conditions and the underlying growth mechanisms leading to the high-speed epitaxial growth of thin silicon films from hydrogenated silicon nanoparticles remain far from being understood. In the present work, extensive molecular dynamics simulations were performed to study the epitaxial growth of silicon thin films resulting from the deposition of plasma-born hydrogenated silicon clusters at low substrate temperatures under realistic reactor conditions.

View Article and Find Full Text PDF

The extraordinary properties of graphene have spurred huge interest in the experimental realization of a two-dimensional honeycomb lattice of silicon, namely, silicene. However, its synthesis on supporting substrates remains a challenging issue. Recently, strong doubts against the possibility of synthesizing silicene on metallic substrates have been brought forward because of the non-negligible interaction between silicon and metal atoms.

View Article and Find Full Text PDF

Based on ab initio molecular dynamics simulations, we show that small nanoclusters of about 1 nm size spontaneously generated in a low-temperature silane plasma do not possess tetrahedral structures, but are ultrastable. Apparently small differences in the cluster structure result in substantial modifications in their electric, magnetic, and optical properties, without the need for any dopants. Their non-tetrahedral geometries notably lead to electron deficient bonds that introduce efficient electron delocalization that strongly resembles the one of a homogeneous electron gas leading to metallic-like bonding within a semiconductor nanocrystal.

View Article and Find Full Text PDF

We fabricated flat, two-dimensional germanium sheets showing a honeycomb lattice that matches that of germanene by depositing submonolayers of Ge on graphite at room temperature and subsequent annealing to 350 °C. Scanning tunneling microscopy shows that the germanene islands have a small buckling with no atomic reconstruction and does not give any hints for alloy formation and hybridization with the substrate. Our density functional theory calculations of the structural properties agree well with our experimental findings and indicate that the germanene sheet interacts only weakly with the substrate underneath.

View Article and Find Full Text PDF

A new family of over-coordinated hydrogenated silicon nanoclusters with outstanding optical and mechanical properties has recently been proposed. For one member of this family, namely the highly symmetric Si19 H12 nanocrystal, strain calculations have been presented with the goal to question its thermal stability and the underlying mechanism of ultrastability and electron-deficiency aromaticity. Here, the invalidity of these strain energy (SE) calculations is demonstrated mainly based on a fundamentally wrong usage of homodesmotic reactions, the miscounting of atomic bonds, and arithmetic errors.

View Article and Find Full Text PDF