Review is made of dosimetric studies of Ge-doped SiO(2) telecommunication fibre as a 1-D thermoluminescence (TL) system for therapeutic applications. To-date, the response of these fibres has been investigated for UV sources, superficial X-ray beam therapy facilities, a synchrotron microbeam facility, electron linear accelerators, protons, neutrons and alpha particles, covering the energy range from a few eV to several MeV. Dosimetric characteristics include, reproducibility, fading, dose response, reciprocity between TL yield and dose-rate and energy dependence.
View Article and Find Full Text PDFThis study aims to establish the sensitive, ∼120 μm high spatial resolution, high dynamic range Ge-doped optical fibres as thermoluminescence (TL) dosimeters for brachytherapy dose distribution. This requires investigation to accommodate sensitivity of detection, both for the possibility of short range dose deposition from beta components as well as gamma/x-mediated dose. In-air measurements are made at distances close to radionuclide sources, evaluating the fall off in dose along the transverse axis of 133Ba and 60Co radioactive sources, at distances from 2 mm up to 20 mm from their midpoints.
View Article and Find Full Text PDFWe investigate the ability of high spatial resolution (∼120 μm) Ge-doped SiO2 TL dosimeters to measure photoelectron dose enhancement resulting from the use of a moderate to high-Z target (an iodinated contrast media) irradiated by 90 kVp X-rays. We imagine its application in a novel radiation synovectomy technique, modelled by a phantom containing a reservoir of I2 molecules at the interface of which the doped silica dosimeters are located. Measurements outside of the iodine photoelectron range are provided for using a stepped-design that allows insertion of the fibres within the phantom.
View Article and Find Full Text PDF