Microbially enhanced oil recovery (MEOR) of heavy oil and bitumen is challenging because light hydrocarbons, which can feed resident microbial communities are present in low concentrations, if at all. We have recently shown that increasing the toluene concentration of heavy oil by aqueous injection followed by injection of nitrate boosts the activity of toluene-oxidizing nitrate-reducing bacteria in heavy oil-containing sand pack columns, giving production of residual oil in place (ROIP). In the current work we found that ethylbenzene is as effective as toluene.
View Article and Find Full Text PDFAmendment of reservoir fluid with injected substrates can enhance the growth and activity of microbes. The present study used isopropyl alcohol (IPA) or acetone to enhance the indigenous anaerobic nitrate-reducing bacterium Thauera sp. TK001.
View Article and Find Full Text PDFMicrobially Enhanced Oil Recovery (MEOR) can enhance oil production with less energy input and less costs than other technologies. The present study used different aqueous electron donors (acetate, glucose, molasses) and an aqueous electron acceptor (nitrate) to stimulate growth of heterotrophic nitrate reducing bacteria (hNRB) to improve production of oil. Initial flooding of columns containing heavy oil (viscosity of 3400cP at 20°C) with CSBK (Coleville synthetic brine medium) produced 0.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
April 2017
Spices are parts of plants that due to their properties are used as colorants, preservatives, or medicine. The uses of spices have been known since long time, and the interest in the potential of spices is remarkable due to the chemical compounds contained in spices, such as phenylpropanoids, terpenes, flavonoids, and anthocyanins. Spices, such as cumin (cuminaldehyde), clove (eugenol), and cinnamon (cinnamaldehyde) among others, are known and studied for their antimicrobial and antioxidant properties due to their main chemical compounds.
View Article and Find Full Text PDFMicrobially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
October 2016
Several food additives are added in food for their preservation to maintain the freshness of food (antioxidants) or to slow down or stop the growth of microorganisms (preservative agents). Nitrites and nitrates are used as preservative agents in meat. Nitrites give a smoked taste, a pinkish color in the meat and protect the consumers against the risk of bacterial deterioration.
View Article and Find Full Text PDFMany endocrine disruptor compounds, such as bisphenol A (BPA) are used today and released into the environment at low doses but they are barely degraded in wastewater treatment plants. One of the potential alternatives to effectively degrade endocrine disruptor compounds is based on the use of the oxidative action of extracellular fungal enzymes. The aim of this work is to study the ability of free and encapsulated enzymes (manganese peroxidase, lignin peroxidase and laccase) to degrade BPA.
View Article and Find Full Text PDFLignin quantification in apple pomace residues was carried out using a microwave oven to replace traditional refluxing during the mild acidolysis step to augment the selectivity of this step towards cleavage of lignin-carbohydrate bonds and to reduce the time needed to quantify lignin. The pressure, temperature and time were optimized by response surface methodology and the results were compared to the Klason lignin methodology. Temperature and pressure had a significant positive effect (p < 0.
View Article and Find Full Text PDFJ Hazard Mater
September 2011
Fruit processing industries generate tremendous amount of solid wastes which is almost 35-40% dry weight of the total produce used for the manufacturing of juices. These solid wastes, referred to as, "pomace" contain high moisture content (70-75%) and biodegradable organic load (high BOD and COD values) so that their management is an important issue. During the management of these pomace wastes by different strategies comprising incineration, landfill, composting, solid-state fermentation to produce high-value enzymes and animal feed, there is production of greenhouse gases (GHG) which must be taken into account.
View Article and Find Full Text PDF