Publications by authors named "Fatma Ceren Kırmızıtas"

Mobile magnetic microrobots have been extensively used in a wide range of biomedical applications due to their numerous advantages. Magnetic microrobots in particular have been developed and shown great potential over the past two decades for the manipulation and migration of both single cells and cell aggregates. The efficient clearance of cell aggregates is crucial to prevent uncontrolled cell proliferation, tissue damage, and invasive surgeries, especially for those related to the vascular system.

View Article and Find Full Text PDF

Unlabelled: The field of microrobotics has emerged as a promising area of research with significant applications in biomedicine, both in vitro and in vivo, such as targeted cargo delivery, microsurgery, and cellular manipulation. Microrobots actuated with multiple modalities have the potential for greater adaptability, robustness, and capability to perform various tasks. Modular units that can reconfigure into various shapes, create structures that may be difficult to fabricate as one whole unit, and be assembled on-site, could provide more versatility by assembly and disassembly of units on demand.

View Article and Find Full Text PDF

Microrobots, untethered miniature devices capable of performing tasks at the microscale, have gained significant attention in the fields of robotics and biomedicine. These devices hold immense potential for various industrial and scientific applications, including targeted drug delivery and cell manipulation. In this study, we present a novel magnetic rolling helical microrobot specifically designed for bio-compatible cell patterning.

View Article and Find Full Text PDF

Microrobots have emerged as promising tools for biomedical and in vivo applications, leveraging their untethered actuation capabilities and miniature size. Despite extensive research on diversifying multi-actuation modes for single types of robots, these tiny machines tend to have limited versatility while navigating different environments or performing specific tasks. To overcome such limitations, self-assembly microstructures with on-demand reconfiguration capabilities have gained recent attention as the future of biocompatible microrobotics, as they can address drug delivery, microsurgery, and organoid development processes.

View Article and Find Full Text PDF

Micro-sized magnetic particles (also known as microrobots [MRs]) have recently been shown to have potential applications for numerous biomedical applications like drug delivery, microengineering, and single cell manipulation. Interdisciplinary studies have demonstrated the ability of these tiny particles to actuate under the action of a controlled magnetic field that not only drive MRs in a desired trajectory but also precisely deliver therapeutic payload to the target site. Additionally, optimal concentrations of therapeutic molecules can also be delivered to the desired site which is cost-effective and safe especially in scenarios where drug dose-related side effects are a concern.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoo tonic, highly pathogenic virus. The new type of coronavirus with contagious nature spread from Wuhan (China) to the whole world in a very short time and caused the new coronavirus disease (COVID-19). COVID-19 has turned into a global public health crisis due to spreading by close person-to-person contact with high transmission capacity.

View Article and Find Full Text PDF

In this study, we aimed to develop a polycationic non-viral carrier for the delivery of the reprogramming factors to the L929 fibroblast cell. We have prepared (3-hydroxybutyrate--3-hydroxyhexanoate) PHBHHx-based nanoparticles with the solvent diffusion method. Cytotoxicity of PXNs was determined via MTT assay.

View Article and Find Full Text PDF