Lysosomal storage disorders (LSDs) are a diverse group of inborn errors of metabolism, which involves the storage of macromolecules within the lysosome due to the absence of or deficiency in lysosomal enzymes. In this condition, respiratory dysfunction is the common cause of morbidity and mortality. Thus, an objective measurement examination of pulmonary function, such as spirometry, is essential for the diagnosis and management of respiratory conditions.
View Article and Find Full Text PDFObjectives: To evaluate the functional impact of a novel variant (c.572A>G, p.Asn191Ser) in three families with SLE and hypocomplementaemic urticarial vasculitis (HUV) from the United Arab Emirates.
View Article and Find Full Text PDFSingle nucleotide variants (SNVs) can exert substantial and extremely variable impacts on various cellular functions, making accurate predictions of their consequences challenging, albeit crucial especially in clinical settings such as in oncology. Laboratory-based experimental methods for assessing these effects are time-consuming and often impractical, highlighting the importance of in-silico tools for variant impact prediction. However, the performance metrics of currently available tools on breast cancer missense variants from benchmarking databases have not been thoroughly investigated, creating a knowledge gap in the accurate prediction of pathogenicity.
View Article and Find Full Text PDFCarbonic anhydrase VA (CA-VA) deficiency is a rare cause of hyperammonemia caused by biallelic mutations in Most patients present with hyperammonemic encephalopathy in early infancy to early childhood, and patients usually have no further recurrence of hyperammonemia with a favorable outcome. This retrospective cohort study reports 18 patients with CA-VA deficiency caused by homozygosity for a founder mutation, c.59G>A p.
View Article and Find Full Text PDFGaucher disease (GD) is mainly caused by glucocerebrosidase (GCase) enzyme deficiency due to genetic variations in the gene leading to the toxic accumulation of sphingolipids in various organs, which causes symptoms such as anemia, thrombocytopenia, hepatosplenomegaly, and neurological manifestations. GD is clinically classified into the non-neuronopathic type 1, and the acute and chronic neuronopathic forms, types 2 and 3, respectively. In addition to the current approved GD medications, the repurposing of Ambroxol (ABX) has emerged as a prospective enzyme enhancement therapy option showing its potential to enhance mutated GCase activity and reduce glucosylceramide accumulation in GD-affected tissues of different genotypes.
View Article and Find Full Text PDFHearing loss (HL) is an impairment of auditory function with identified genetic forms that can be syndromic (30%) or non-syndromic (70%). HL is genetically heterogeneous, with more than 1,000 variants across 150 causative genes identified to date. The genetic diagnostic rate varies significantly depending on the population being tested.
View Article and Find Full Text PDFStudies continue to uncover contributing risk factors for breast cancer (BC) development including genetic variants. Advances in machine learning and big data generated from genetic sequencing can now be used for predicting BC pathogenicity. However, it is unclear which tool developed for pathogenicity prediction is most suited for predicting the impact and pathogenicity of variant effects.
View Article and Find Full Text PDFBackground: In metabolic stress, the cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) enzyme is involved in energy production through the gluconeogenesis pathway. PEPCK-C deficiency is a rare childhood-onset autosomal recessive metabolic disease caused by PCK1 genetic defects. Previous studies showed a broad clinical spectrum ranging from asymptomatic to recurrent hypoglycemia with/without lactic acidosis, encephalopathy, seizures, and liver failure.
View Article and Find Full Text PDFBirk-Landau-Perez syndrome (BILAPES) is an autosomal recessive cerebro-renal syndrome associated with genetic defects in the gene, initially reported in 2017 in six individuals belonging to a large Bedouin kindred. The gene encodes a putative mitochondrial zinc transporter with ubiquitous expression, the highest found in the brain, kidney, and skeletal muscle. Since the first report, only one additional affected patient has been described, but there were some inconsistencies, such as hearing loss, failure to thrive, and neuroimaging findings between the clinical presentation of the disease in the Bedouin family and the second patient.
View Article and Find Full Text PDFSpastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM) are linked to genetic variants since the first reported case in 2015. encodes for the neutral amino acid transporter ASCT1 which is involved in the transportation of serine between astrocytes and neurons. Although most of the reported cases are of Ashkenazi Jewish ancestry, SPATCCM has also been reported in Irish, Italian, Czech, Palestinian, and Pakistani ethnicities.
View Article and Find Full Text PDFGaucher disease is caused by glucocerebroside accumulation in different tissues due to beta-glucocerebrosidase enzyme deficiency. Genetic defects in proteins involved in beta-glucocerebrosidase processing and activation may indirectly lead to Gaucher-like phenotypes in affected individuals. Saposin C, derived from the prosaposin precursor, is a crucial activator for beta-glucocerebrosidase, and its deficiency has been linked to Gaucher-like phenotypes in several clinical reports.
View Article and Find Full Text PDFArylsulfatase B is an enzyme present in the lysosomes that involves in the breakdown of large sugar molecules known as glycosaminoglycans (GAGs). Arylsulfatase B chemically modifies two GAGs, namely, dermatan sulfate and chondroitin sulfate, by removing the sulfate group. Mutations in the gene encoding the arylsulfataseB enzyme causes lysosomal storage disorder, mucopolysaccharidosis type VI (MPS VI), or Maroteaux-Lamy syndrome.
View Article and Find Full Text PDFHere, we delineate the phenotype of two siblings with a bi-allelic frameshift variant in MMP15 gene with congenital cardiac defects, cholestasis, and dysmorphism. Genome sequencing analysis revealed a recently reported homozygous frameshift variant (c.1058delC, p.
View Article and Find Full Text PDFThis article reports a targeted metabolomic method for total plasma fatty acids (FAs) of clinical or nutritional relevance. Thirty-six saturated, unsaturated, or branched-chain FAs with a chain length of C8-C28 were quantified using reversed-phase liquid chromatography-tandem mass spectrometry. FAs in plasma (10 μL) were acid-hydrolyzed, extracted, and derivatized with DAABD-AE (4-[2-(,-Dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole) at 60 °C for 1 h.
View Article and Find Full Text PDFIn order to assess the genomic landscape of the United Arab Emirates (UAE) mitogenome, we sequenced and analyzed the complete genomes of 232 Emirate females mitochondrial DNA (mtDNA) within and compared those to Africa. We investigated the prevalence of haplogroups, genetic variation, heteroplasmy, and demography among the UAE native population with diverse ethnicity and relatively high degree of consanguinity. We identified 968 mtDNA variants and high-resolution 15 haplogroups.
View Article and Find Full Text PDFGM1-gangliosidosis, a lysosomal storage disorder, is associated with ~ 161 missense variants in the GLB1 gene. Affected patients present with β-galactosidase (β-Gal) deficiency in lysosomes. Loss of function in ER-retained misfolded enzymes with missense variants is often due to subcellular mislocalization.
View Article and Find Full Text PDFSchindler disease is a rare autosomal recessive lysosomal storage disorder caused by a deficiency in alpha-N-acetylgalactosaminidase (α-NAGA) activity due to defects in the NAGA gene. Accumulation of the enzyme's substrates results in clinically heterogeneous symptoms ranging from asymptomatic individuals to individuals with severe neurological manifestations. Here, a 5-year-old Emirati male born to consanguineous parents presented with congenital microcephaly and severe neurological manifestations.
View Article and Find Full Text PDFDeficiency of propionyl-CoA carboxylase causes propionic acidemia and deficiencies of methylmalonyl-CoA mutase or its cofactor adenosylcobalamin cause methylmalonic acidemia. These inherited disorders lead to pathological accumulation of propionyl-CoA which is converted in Krebs cycle to methylcitrate (MCA) in a reaction catalyzed by citrate synthase. In healthy individuals where no propionyl-CoA accumulation occurs, this enzyme drives the condensation of acetyl-CoA with oxaloacetate to produce citric acid (CA), a normal Krebs cycle intermediate.
View Article and Find Full Text PDFNext-generation sequencing (NGS) has been instrumental in solving the genetic basis of rare inherited diseases, especially neurodevelopmental syndromes. However, functional workup is essential for precise phenotype definition and to understand the underlying disease mechanisms. Using whole exome (WES) and whole genome sequencing (WGS) in four independent families with hypotonia, neurodevelopmental delay, facial dysmorphism, loss of white matter, and thinning of the corpus callosum, we identified four previously unreported homozygous truncating PPP1R21 alleles: c.
View Article and Find Full Text PDFAccumulation of methylcitrate is a biochemical hallmark of inborn errors of propionate metabolism, a group of disorders that include propionic acidemia, methylmalonic aciduria and cobalamin defects. In clinical laboratories, this analyte is measured without quantification by gas chromatography mass spectrometry as part of urine organic acids. Here we describe a simple, sensitive and specific method to quantify methylcitrate in dried urine spots by liquid chromatography tandem mass spectrometry.
View Article and Find Full Text PDFBackground: Mutations in PEX16 cause peroxisome biogenesis disorder (PBD). Zellweger syndrome characterized by neurological dysfunction, dysmorphic features, liver disease and early death represents the severe end of this clinical spectrum. Here we discuss the diagnostic challenge of atypical PEX16 related PBD in 3 patients from highly inbred kindred and describe the role of specific metabolites analyses, fibroblasts studies, whole-exome sequencing (WES) and metabolomics profiling to establish the diagnosis.
View Article and Find Full Text PDFCongenital disorders of manganese metabolism are rare occurrences in children, and medical management of these disorders is complex and challenging. Homozygous exonic mutations in the manganese transporter SLC39A14 have recently been associated with a pediatric-onset neurodegenerative disorder characterized by brain manganese accumulation and clinical signs of manganese neurotoxicity, including parkinsonism-dystonia. We performed whole exome sequencing on DNA samples from two unrelated female children from the United Arab Emirates with progressive movement disorder and brain mineralization, identified a novel homozygous intronic mutation in SLC39A14 in both children, and demonstrated that the mutation leads to aberrant splicing.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2018
Background: Synaptojanin 1 is encoded by the SYNJ1(MIM 604297) and plays a major role in phosphorylation and recycling of synaptic vesicles. Mutation of SYNJ1 is associated with two distinct phenotypes; a known homozygous missense mutation (p.Arg258Gln) associated with early-onset Parkinson disease (MIM 615530), whereas mutation with complete loss of SYNJ1 function result in a lethal neurodegenerative disease with intractable seizure and tauopathies (MIM 617389).
View Article and Find Full Text PDFDifferent approaches have been utilized or proposed for the treatment of lysosomal storage disorders (LSDs) including enzyme replacement and hematopoietic stem cell transplant therapies, both aiming to compensate for the enzymatic loss of the underlying mutated lysosomal enzymes. However, these approaches have their own limitations and therefore the vast majority of LSDs are either still untreatable or their treatments are inadequate. Missense mutations affecting enzyme stability, folding and cellular trafficking are common in LSDs resulting often in low protein half-life, premature degradation, aggregation and retention of the mutant proteins in the endoplasmic reticulum.
View Article and Find Full Text PDFPyrroline-5-carboxylate reductase 2, encoded by PYCR2, is one of the three homologous enzymes that catalyze the last step of proline synthesis. Homozygous variants in PYCR2 have been reported in patients from multiple consanguineous families with hypomyelinating leukodystrophy 10 (HLD10) (MIM: 616420). Here, we report five additional patients from three families with homozygous nonsense or missense variants in PYCR2, identified through clinical exome sequencing.
View Article and Find Full Text PDF