Publications by authors named "Fatlum Hajredini"

BY-kinases (for bacterial tyrosine kinases) constitute a family of protein tyrosine kinases that are highly conserved in the bacterial kingdom and occur most commonly as essential components of multicomponent assemblies responsible for the biosynthesis, polymerization, and export of complex polysaccharides involved in biofilm or capsule formation. BY-kinase function has been attributed to a cyclic process involving formation of an oligomeric species, its disassembly into constituent monomers, and subsequent reassembly, depending on the overall phosphorylation level of a C-terminal cluster of tyrosine residues. However, the relationship of this process to the active/inactive states of the enzyme and the mechanism of its integration into the polysaccharide production machinery remain unclear.

View Article and Find Full Text PDF

Bacterial tyrosine kinases (BY-kinases) and shikimate kinases (SKs) comprise two structurally divergent P-loop containing enzyme families that share similar catalytic site geometries, most notably with respect to their Walker-A, Walker-B, and DxD motifs. We had previously demonstrated that in BY-kinases, a specific interaction between the Walker-A and Walker-B motifs, driven by the conserved "catalytic" lysine housed on the former, leads to a conformation that is unable to efficiently coordinate Mg•ATP and is therefore incapable of chemistry. Here, using enhanced sampling molecular dynamics simulations, we demonstrate that structurally similar interactions between the Walker-A and Walker-B motifs, also mediated by the catalytic lysine, stabilize a state in SKs that deviates significantly from one that is necessary for the optimal coordination of Mg•ATP.

View Article and Find Full Text PDF

BY-kinases constitute a protein tyrosine kinase family that encodes unique catalytic domains that deviate from those of eukaryotic kinases resembling P-loop nucleotide triphosphatases (NTPases) instead. We have used computational and supporting biochemical approaches using the catalytic domain of the BY-kinase, Wzc, to illustrate mechanistic divergences between BY-kinases and NTPases despite their deployment of similar catalytic motifs. In NTPases, the “arginine finger” drives the reactive conformation of ATP while also displacing its solvation shell, thereby making favorable enthalpic and entropic contributions toward βγ-bond cleavage.

View Article and Find Full Text PDF

BY-kinases represent a highly conserved family of protein tyrosine kinases unique to bacteria without eukaryotic orthologs. BY-kinases are regulated by oligomerization-enabled transphosphorylation on a C-terminal tyrosine cluster through a process with sparse mechanistic detail. Using the catalytic domain (CD) of the archetypal BY-kinase, Wzc, and enhanced-sampling molecular dynamics simulations, isothermal titration calorimetry and nuclear magnetic resonance measurements, we propose a mechanism for its activation and nucleotide exchange.

View Article and Find Full Text PDF

Eukaryotic elongation factor 2 kinase (eEF-2K), an atypical calmodulin-activated protein kinase, regulates translational elongation by phosphorylating its substrate, eukaryotic elongation factor 2 (eEF-2), thereby reducing its affinity for the ribosome. The activation and activity of eEF-2K are critical for survival under energy-deprived conditions and is implicated in a variety of essential physiological processes. Previous biochemical experiments have indicated that the binding site for the substrate eEF-2 is located in the C-terminal domain of eEF-2K, a region predicted to harbor several α-helical repeats.

View Article and Find Full Text PDF

Eukaryotic elongation factor 2 kinase (eEF-2K), the only known calmodulin (CaM)-activated α-kinase, phosphorylates eukaryotic elongation factor 2 (eEF-2) on a specific threonine (Thr-56) diminishing its affinity for the ribosome and reducing the rate of nascent chain elongation during translation. Despite its critical cellular role, the precise mechanisms underlying the CaM-mediated activation of eEF-2K remain poorly defined. Here, employing a minimal eEF-2K construct (TR) that exhibits activity comparable to the wild-type enzyme and is fully activated by CaM in vitro and in cells, and using a variety of complimentary biophysical techniques in combination with computational modeling, we provide a structural mechanism by which CaM activates eEF-2K.

View Article and Find Full Text PDF