The moiré potential in rotationally misfit two-dimensional (2D) heterostructures has been used to build artificial exciton and electron lattices, which have become platforms for realizing exotic electronic phases. Here, we demonstrate a different approach to create a superlattice potential in 2D crystals by using the near field of an array of polar molecules. A bilayer of titanyl phthalocyanine (TiOPc), consisting of alternating out-of-plane dipoles, is deposited on monolayer MoS.
View Article and Find Full Text PDFOrganic photovoltaics (OPVs) based on non-fullerene acceptors (NFAs) have achieved a power conversion efficiency close to 20%. These NFA OPVs can generate free carriers efficiently despite a very small energy level offset at the donor/acceptor interface. Why these NFAs can enable efficient charge separation (CS) with low energy losses remains an open question.
View Article and Find Full Text PDFDespite the large binding energy of charge transfer (CT) excitons in type-II organic/2D heterostructures, it has been demonstrated that free carriers can be generated from CT excitons with a long lifetime. Using a model fluorinated zine phthalocyanine (FZnPc)/monolayer-WS interface, we find that CT excitons can dissociate spontaneously into free carriers despite it being an enthalpy-uphill process. Specifically, it is observed that CT excitons can gain an energy of 250 meV in 50 ps and dissociate into free carriers without any applied electric field.
View Article and Find Full Text PDFThe nanoscale moiré pattern formed at 2D transition-metal dichalcogenide crystal (TMDC) heterostructures provides periodic trapping sites for excitons, which is essential for realizing various exotic phases such as artificial exciton lattices, Bose-Einstein condensates, and exciton insulators. At organic molecule/TMDC heterostructures, similar periodic potentials can be formed via other degrees of freedom. Here, we utilize the structure deformability of a 2D molecular crystal as a degree of freedom to create a periodic nanoscale potential that can trap interlayer excitons (IXs).
View Article and Find Full Text PDFWe report the generation of long-lived and highly mobile photocarriers in hybrid van der Waals heterostructures that are formed by monolayer graphene, few-layer transition metal dichalcogenides, and the organic semiconductor FZnPc. Samples are fabricated by dry transfer of mechanically exfoliated MoS or WS few-layer flakes on a graphene film, followed by deposition of FZnPc. Transient absorption microscopy measurements are performed to study the photocarrier dynamics.
View Article and Find Full Text PDFHalide perovskites intrinsically contain a large amount of point defects. The interaction of these defects with photocarriers, photons, and lattice distortion remains a complex and unresolved issue. We found that for halide perovskite films with excess halide vacancies, the Fermi level can be shifted by as much as 0.
View Article and Find Full Text PDFAt organic donor-acceptor (D-A) interfaces, electron and hole are bound together to form charge transfer (CT) excitons. The electron and hole wave functions in these CT excitons can spatially delocalize. The electron delocalization opens up possibilities of extracting free charges from bound excitons by manipulating the potential energy landscape on the nanoscale.
View Article and Find Full Text PDFExcited-state electron transfer (ET) across molecules/transition metal dichalcogenide crystal (TMDC) interfaces is a critical process for the functioning of various organic/TMDC hybrid optoelectronic devices. Therefore, it is important to understand the fundamental factors that can facilitate or limit the ET rate. Here it is found that an undesirable combination of the interfacial band offset and the spatial dimensionality of the delocalized electron wave function can significantly slow down the ET process.
View Article and Find Full Text PDF