Publications by authors named "Fatimah Aloraini"

Rapid advancements in connected and autonomous vehicles (CAVs) are fueled by breakthroughs in machine learning, yet they encounter significant risks from adversarial attacks. This study explores the vulnerabilities of machine learning-based intrusion detection systems (IDSs) within in-vehicle networks (IVNs) to adversarial attacks, shifting focus from the common research on manipulating CAV perception models. Considering the relatively simple nature of IVN data, we assess the susceptibility of IVN-based IDSs to manipulation-a crucial examination, as adversarial attacks typically exploit complexity.

View Article and Find Full Text PDF