Two retrospective audits were undertaken across several hospitals to understand the frequency and preventability of emergency admissions in people with neuromuscular disease (NMD). Following audit 1 (A1), a number of preventable themes emerged on the basis of which recommendations were made to improve quality and co-ordination of care and a network approach was developed to improve awareness and education amongst patients and non-expert professionals. Audit 2 (A2) was undertaken to determine the effect of these measures.
View Article and Find Full Text PDFObjective: To characterize the phenotype of patients with symptoms of periodic paralysis (PP) and ryanodine receptor () gene mutations.
Methods: Cases with a possible diagnosis of PP but additional clinicopathologic findings previously associated with related disorders were referred for a tertiary neuromuscular clinical assessment in which they underwent detailed clinical evaluation, including neurophysiologic assessment, muscle biopsy, and muscle MRI. Genetic analysis with next-generation sequencing and/or targeted Sanger sequencing was performed.
Background: Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities.
Methods: We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia.
Paroxysmal dyskinesia can be subdivided into three clinical syndromes: paroxysmal kinesigenic dyskinesia or choreoathetosis, paroxysmal exercise-induced dyskinesia, and paroxysmal non-kinesigenic dyskinesia. Each subtype is associated with the known causative genes PRRT2, SLC2A1 and PNKD, respectively. Although separate screening studies have been carried out on each of the paroxysmal dyskinesia genes, to date there has been no large study across all genes in these disorders and little is known about the pathogenic mechanisms.
View Article and Find Full Text PDFBackground: Mutations in the gene ATP1A3 have recently been identified to be prevalent in patients with alternating hemiplegia of childhood (AHC2). Based on a large series of patients with AHC, we set out to identify the spectrum of different mutations within the ATP1A3 gene and further establish any correlation with phenotype.
Methods: Clinical data from an international cohort of 155 AHC patients (84 females, 71 males; between 3 months and 52 years) were gathered using a specifically formulated questionnaire and analysed relative to the mutational ATP1A3 gene data for each patient.
Alternating hemiplegia of childhood is a rare disorder caused by de novo mutations in the ATP1A3 gene, expressed in neurons and cardiomyocytes. As affected individuals may survive into adulthood, we use the term 'alternating hemiplegia'. The disorder is characterized by early-onset, recurrent, often alternating, hemiplegic episodes; seizures and non-paroxysmal neurological features also occur.
View Article and Find Full Text PDFDe novo monoallelic variants in NFIX cause two distinct syndromes. Whole gene deletions, nonsense variants and missense variants affecting the DNA-binding domain have been seen in association with a Sotos-like phenotype that we propose is referred to as Malan syndrome. Frameshift and splice-site variants thought to avoid nonsense-mediated RNA decay have been seen in Marshall-Smith syndrome.
View Article and Find Full Text PDFMutations in Bcl-2 associated athanogene-3 (BAG3) are a rare cause of myofibrillar myopathy, characterised by rapidly progressive proximal and axial myopathy, cardiomyopathy and respiratory compromise. Neuropathy has been documented neurophysiologically in previously reported cases of BAG3-associated myofibrillar myopathy and in some cases giant axons were observed on nerve biopsies; however, neuropathy was not thought to be a dominant feature of the disease. In the context of inherited neuropathy, giant axons are typically associated with autosomal recessive giant axonal neuropathy caused by gigaxonin mutations but have also been reported in association with NEFL- and SH3TC2-associated Charcot-Marie-Tooth disease.
View Article and Find Full Text PDF