Thymic epithelial cell differentiation, growth and function depend on the expression of the transcription factor Foxn1; however, its target genes have never been physically identified. Using static and inducible genetic model systems and chromatin studies, we developed a genome-wide map of direct Foxn1 target genes for postnatal thymic epithelia and defined the Foxn1 binding motif. We determined the function of Foxn1 in these cells and found that, in addition to the transcriptional control of genes involved in the attraction and lineage commitment of T cell precursors, Foxn1 regulates the expression of genes involved in antigen processing and thymocyte selection.
View Article and Find Full Text PDFBackground: Spontaneous reports from patients able to report vascular sequelae in real time, and recognition that serum non transferrin bound iron may reach or exceed 10μmol/L in the blood stream after iron tablets or infusions, led us to hypothesize that conventional iron treatments may provoke acute vascular injury. This prompted us to examine whether a phenotype could be observed in normal human endothelial cells treated with low dose iron.
Methodology: Confluent primary human endothelial cells (EC) were treated with filter-sterilized iron (II) citrate or fresh media for RNA sequencing and validation studies.
Background: There is significant interest in new loci for the inherited condition hereditary haemorrhagic telangiectasia (HHT) because the known disease genes encode proteins involved in vascular transforming growth factor (TGF)-beta signalling pathways, and the disease phenotype appears to be unmasked or provoked by angiogenesis in man and animal models. In a previous study, we mapped a new locus for HHT (HHT3) to a 5.7 Mb region of chromosome 5.
View Article and Find Full Text PDFBackground: Coagulation factor VIII (FVIII) deficiency leads to haemophilia A. Conversely, elevated plasma levels are a strong predictor of recurrent venous thromboemboli and pulmonary hypertension phenotypes in which in situ thromboses are implicated. Extrahepatic sources of plasma FVIII are implicated, but have remained elusive.
View Article and Find Full Text PDFThe autosomal-dominant trait hereditary haemorrhagic telangiectasia (HHT) affects 1 in 5-8000 people. Genes mutated in HHT (most commonly for endoglin or activin receptor-like kinase (ALK1)) encode proteins that modulate transforming growth factor (TGF)-beta superfamily signalling in vascular endothelial cells; mutations lead to the development of fragile telangiectatic vessels and arteriovenous malformations. In this article, we review the underlying molecular, cellular and circulatory pathobiology; explore HHT clinical and genetic diagnostic strategies; present detailed considerations regarding screening for asymptomatic visceral involvement; and provide overviews of management strategies.
View Article and Find Full Text PDFHereditary haemorrhagic telangiectasia (HHT) causes chronic nasal and gastrointestinal haemorrhage. Prothrombotic agents are commonly used for severe haemorrhage. Thrombotic risks have not been defined.
View Article and Find Full Text PDF