The onset of random X chromosome inactivation in mouse requires the switch from a symmetric to an asymmetric state, where the identities of the future inactive and active X chromosomes are assigned. This process is known as X chromosome choice. Here, we show that RIF1 and KAP1 are two fundamental factors for the definition of this transcriptional asymmetry.
View Article and Find Full Text PDFOct1 (Pou2f1) is a transcription factor of the POU-homeodomain family that is unique in being ubiquitously expressed in both embryonic and adult mouse tissues. Although its expression profile suggests a crucial role in multiple regions of the developing organism, the only essential function demonstrated so far has been the regulation of cellular response to oxidative and metabolic stress. Here, we describe a loss-of-function mouse model for Oct1 that causes early embryonic lethality, with Oct1-null embryos failing to develop beyond the early streak stage.
View Article and Find Full Text PDFAn important question in oocyte-mediated nuclear reprogramming is whether gene expression of the donor nucleus changes randomly or follows a pattern. Since cloned embryos are very heterogeneous and arrest frequently during preimplantation development, a random scenario is generally accepted. In the present study, we resolve the heterogeneity of cumulus cell-derived mouse clones by recognizing structured subsets, and we analyze their relationship to reprogramming of donor nuclei.
View Article and Find Full Text PDFThe mechanisms that have evolved to maintain genome stability during cell cycle progression are challenged when a somatic cell nucleus is placed in a meiotic environment such as the ooplasm. Chromosomal spindle aberrations ensue in the majority of reconstructed oocytes within 2 h of transplantation, but it is not known if they recover or persist with the onset of embryonic divisions. We analyzed the chromosomal spindles and the karyotype of cumulus cell-derived mouse clones through the initial and hence most critical mitoses.
View Article and Find Full Text PDFBesides holding great promise in clinics, embryonic stem (ES) cells represent a valuable tool for studying regulation of early developmental processes, such as cell differentiation in preimplantation embryos. The caudal-related homeobox protein Cdx2 is a transcriptional regulator essential for trophoblast lineage, functioning as early as implantation. Using an inducible system, we show that gain of Cdx2 function in ES cells triggers trophoblast-like morphological differentiation, accompanied by ploidy increase, onset of expression of trophoblast-specific markers, and loss of pluripotency-associated gene expression.
View Article and Find Full Text PDFA prevailing view of cloning by somatic-cell nuclear transfer is that reprogramming of gene expression occurs during the first few hours after injection of the nucleus into an oocyte, that the process is stochastic, and that the type of reprogramming needed for cloning success is foreign and unlikely to be readily achieved in the ooplasm. Here, we present evidence that the release of reprogramming capacity is contingent on the culture environment of the clone while the contribution of aneuploidy to altered gene expression is marginal. In particular, the rate of blastocyst formation in clones and the regional distribution of mRNA for the pluripotent stem cell marker Oct4 in clonal blastocysts was highly dependent on the culture environment after cumulus cell nuclear transfer, unlike that in genetically equivalent zygotes.
View Article and Find Full Text PDFIn this issue of Cell, and add a new transcriptional operating system to the known Oct4 and Stat3 systems required for early embryonal stem cell potency and self-renewal. Nanog, a homeobox transcription factor, plays a crucial role in the second embryonic cell fate specification following formation of the blastocyst.
View Article and Find Full Text PDF