Because of its properties, silver is among the most used metals both as salt and as nanomaterials (NMs), hence reaching the environment. Multigenerational (MG) exposure testing is scarce, and especially so for NMs and soil invertebrates. In this study the MG effects of Ag NMs (Ag NM300K) and Ag salt (AgNO) were assessed, using in LUFA 2.
View Article and Find Full Text PDFSilver (Ag) is one of the most used elements in the nanomaterials (NMs) form, which upon release to the environment can be harmful to organisms. We compared the toxicokinetics (TK) and toxicodynamics (TD) of Ag from AgNO (0, 15, 45, 135, 405 mg Ag/kg soil) and AgNM300K (0, 75, 150, 300, 600, 1200 mg Ag/kg soil) in the model organism Enchytraeus crypticus. Organisms were exposed in LUFA 2.
View Article and Find Full Text PDFChromium emissions led to increased concentrations in soil, where it can affect soil organisms to relevant levels. With the aim of better understanding the effects of Cr throughout time, its toxicokinetics-toxicodynamics (TKTD) were evaluated in the soil model organism Enchytraeus crypticus to assess the development of internal concentrations and consequent toxic effects. To achieve this goal, organisms were exposed in LUFA 2.
View Article and Find Full Text PDFThe aim of this study was to evaluate the toxicokinetics-toxicodynamics (TKTD) of Cu and Cd in the soil model organism Enchytraeus crypticus, and assess the development of internal effect concentrations over time. Animals were exposed in LUFA 2.2 soil spiked with increasing concentrations of Cu and Cd.
View Article and Find Full Text PDFChromium is naturally occurring, but emission from anthropogenic sources can lead to increased soil concentrations. Information on its toxicokinetics is essential in order to understand the time needed to reach toxicity and the mechanisms of uptake/elimination. In this study the toxicokinetics of Cr(III) was evaluated using the soil standard species .
View Article and Find Full Text PDFToxicokinetics information is key to understanding the underlying intoxication processes, although this is often lacking. Hence, in the present study the toxicokinetics of copper (Cu) and cadmium (Cd) was assessed in the soil invertebrate Enchytraeus crypticus. The animals were exposed in LUFA 2.
View Article and Find Full Text PDFNanomaterials (NMs) are recommended to be tested in longer term exposures. Multigenerational (MG) studies are scarce and particularly important because effects can be transferred to the next generation. The current risk assessment framework does not include MG effects and this is a caveat for persistent materials.
View Article and Find Full Text PDFNanoparticles (NPs) such as nickel (Ni) are widely used in several applications. Nevertheless, the environmental effects of Ni NPs are still poorly understood. In the present study, the toxicity of Ni NPs and nickel nitrate (NiNO ) was assessed using the standard test species in soil ecotoxicology, Enchytraeus crypticus (Oligochaeta), in a full life cycle test, adding the endpoints hatching, growth, and time to reach maturity, besides survival and reproduction as in the standard Organisation for Economic Co-operation and Development Guideline 220 and/or International Organization for Standardization 16387.
View Article and Find Full Text PDFCopper oxide nanomaterials (CuONMs) have various applications in industry and enter the terrestrial environment, e.g. via sewage sludge.
View Article and Find Full Text PDFSoil ecotoxicity standard tests for invertebrates are usually limited to the assessment of endpoints like survival and reproduction. Adverse effects may occur at other developmental stages, e.g.
View Article and Find Full Text PDF