Publications by authors named "Fatima C Alvim"

The surface of plants forms a defense barrier that directly inhibits the first point of contact of microorganisms with the host. To understand this defense mechanism in Moniliophthora perniciosa interaction with Theobroma cacao cv Catongo, the aim of this study was to compare the changes in protein expression in basidiospores of the fungus M. perniciosa in response the leaf water washes (LWW) of two contrasting cocoa varieties for resistance to witches' broom disease.

View Article and Find Full Text PDF

Background: Moniliophthora perniciosa is a phytopathogenic fungus responsible for witches' broom disease of cacao trees (Theobroma cacao L.). Understanding the molecular events during germination of the pathogen may enable the development of strategies for disease control in these economically important plants.

View Article and Find Full Text PDF
Article Synopsis
  • Witches' broom, caused by the fungus Moniliophthora perniciosa, is the most significant disease affecting cocoa crops in Bahia, Brazil, and other regions, and while its germination process is crucial, basidiospore biology has been under-researched.
  • This study aimed to enhance methods for producing basidiospores for protein analysis, ultimately creating a proteomics map of ungerminated basidiospores and establishing a protein interaction network using Ustilago maydis as a reference.
  • Findings revealed a substantial range in basidiospore productivity, identified 178 proteins linked to essential biological functions, and highlighted significant roles of certain orthologous proteins in fungal development despite their lack of clustering
View Article and Find Full Text PDF

The interaction amongst papain-like cysteine-proteases (PLCP) and their substrates and inhibitors, such as cystatins, can be perceived as part of the molecular battlefield in plant-pathogen interaction. In cacao, four cystatins were identified and characterized by our group. We identified 448 proteases in cacao genome, whereof 134 were cysteine-proteases.

View Article and Find Full Text PDF

Lectins are carbohydrate-binding proteins that recognize and modulate physiological activities and have been used as a toll for detection and identification of biomolecules, and therapy of diseases. In this study we have isolated a lectin present in the latex of Euphorbia tirucalli, and named it Eutirucallin. The latex protein extract was subjected to ion exchange chromatography and showed two peaks with haemagglutinating activity.

View Article and Find Full Text PDF

NEP1 (necrosis- and ethylene-inducing peptide 1)-like proteins (NLPs) have been identified in a variety of taxonomically unrelated plant pathogens and share a common characteristic of inducing responses of plant defense and cell death in dicotyledonous plants. Even though some aspects of NLP action have been well characterized, nothing is known about the global range of modifications in proteome and metabolome of NLP-treated plant cells. Here, using both proteomic and metabolomic approaches we were able to identify the global molecular and biochemical changes in cells of Nicotiana benthamiana elicited by short-term treatment with MpNEP2, a NLP of Moniliophthora perniciosa, the basidiomycete responsible for the witches' broom disease on cocoa (Theobroma cacao L.

View Article and Find Full Text PDF

The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death.

View Article and Find Full Text PDF

Oxalic acid (OA) and Nep1-like proteins (NLP) are recognized as elicitors of programmed cell death (PCD) in plants, which is crucial for the pathogenic success of necrotrophic plant pathogens and involves reactive oxygen species (ROS). To determine the importance of oxalate as a source of ROS for OA- and NLP-induced cell death, a full-length cDNA coding for an oxalate decarboxylase (FvOXDC) from the basidiomycete Flammulina velutipes, which converts OA into CO(2) and formate, was overexpressed in tobacco plants. The transgenic plants contained less OA and more formic acid compared with the control plants and showed enhanced resistance to cell death induced by exogenous OA and MpNEP2, an NLP of the hemibiotrophic fungus Moniliophthora perniciosa.

View Article and Find Full Text PDF

Three cystatin open reading frames named TcCys1, TcCys2 and TcCys3 were identified in cDNA libraries from compatible interactions between Theobroma cacao (cacao) and Moniliophthora perniciosa. In addition, an ORF named TcCys4 was identified in the cDNA library of the incompatible interaction. The cDNAs encoded conceptual proteins with 209, 127, 124, and 205 amino acid residues, with a deduced molecular weight of 24.

View Article and Find Full Text PDF

Preparation of high-quality proteins from cacao vegetative organs is difficult due to very high endogenous levels of polysaccharides and polyphenols. In order to establish a routine procedure for the application of proteomic and biochemical analysis to cacao tissues, three new protocols were developed; one for apoplastic washing fluid (AWF) extraction, and two for protein extraction--under denaturing and nondenaturing conditions. The first described method allows a quick and easy collection of AWF--using infiltration-centrifugation procedure--that is representative of its composition in intact leaves according to the smaller symplastic contamination detected by the use of the hexose phosphate isomerase marker.

View Article and Find Full Text PDF