Publications by authors named "Fatima Boukari"

Automated cell segmentation and tracking enables the quantification of static and dynamic cell characteristics and is significant for disease diagnosis, treatment, drug development, and other biomedical applications. This paper introduces a method for fully automated cell tracking, lineage construction, and quantification. Cell detection is performed in the joint spatio-temporal domain by a motion diffusion-based Partial Differential Equation (PDE) combined with energy minimizing active contours.

View Article and Find Full Text PDF

Objective: In this paper we introduce a methodology for hard and soft tissue quantification at proximal, intermediate and distal tibia sites using peripheral quantitative computed tomography scans. Quantification of bone properties is crucial for estimating bone structure resistance to mechanical stress and adaptations to loading. Soft tissue variables can be computed to investigate muscle volume and density, muscle-bone relationship, and fat infiltration.

View Article and Find Full Text PDF

We describe a systematic approach to image, track, and quantify the movements of HIV viruses embedded in human cervical mucus. The underlying motivation for this study is that, in HIV-infected adults, women account for more than half of all new cases and most of these women acquire the infection through heterosexual contact. The endocervix is believed to be a susceptible site for HIV entry.

View Article and Find Full Text PDF

Background: Cell segmentation is a critical step for quantification and monitoring of cell cycle progression, cell migration, and growth control to investigate cellular immune response, embryonic development, tumorigenesis, and drug effects on live cells in time-lapse microscopy images.

Methods: In this study, we propose a joint spatio-temporal diffusion and region-based level-set optimization approach for moving cell segmentation. Moving regions are initially detected in each set of three consecutive sequence images by numerically solving a system of coupled spatio-temporal partial differential equations.

View Article and Find Full Text PDF