Context: Within urban air sheds, specific ambient air pollutants typically peak at predictable times throughout the day. For example, in environments dominated by mobile sources, peak nitrogen dioxide (NO2) levels coincide with morning and afternoon rush hours, while peak levels of ozone (O3), occur in the afternoon.
Objective: Given that exposure to a single pollutant might sensitize the cardiopulmonary system to the effects of a subsequent exposure to a second pollutant, we hypothesized that a morning exposure to NO2 will exaggerate the cardiovascular effects of an afternoon O3 exposure in rats.
Background: The potential for seasonal differences in the physicochemical characteristics of ambient particulate matter (PM) to modify interactive effects with gaseous pollutants has not been thoroughly examined. The purpose of this study was to compare cardiac responses in conscious hypertensive rats co-exposed to concentrated ambient particulates (CAPs) and ozone (O3) in Durham, NC during the summer and winter, and to analyze responses based on particle mass and chemistry.
Methods: Rats were exposed once for 4 hrs by whole-body inhalation to fine CAPs alone (target concentration: 150 μg/m3), O3 (0.