This study aimed to integrate game theory and deep learning algorithms with the InVEST Ecosystem Services Model (IESM) for Sediment Retention (SR) modeling in the Kasilian watershed, Iran. The Kasilian watershed is characterized by multiple sub-watersheds, which vary in their environmental conditions and SR potential, with a total of 19 sub-watersheds. The research was carried out in four phases: mapping SR using the IESM, implementing the Fallback bargaining algorithm based on game theory, applying deep learning algorithms (CNN, LSTM, RNN), and performing statistical analysis for optimal model selection.
View Article and Find Full Text PDF