Floods are natural occurrences that pose serious risks to human life and the environment, including significant property and infrastructure damage and subsequent socioeconomic challenges. Recent floods in Cheongju County, South Korea have been linked to river overflow. In this study, we created flood susceptibility maps of Cheongju, South Korea using machine learning techniques including support vector regression (SVR), boosted tree (BOOST), and long short-term memory (LSTM) algorithms, based on environmental factors.
View Article and Find Full Text PDFCoastal aquifer vulnerability assessment (CAVA) studies are essential for mitigating the effects of seawater intrusion (SWI) worldwide. In this research, the vulnerability of the coastal aquifer in the Lahijan region of northwest Iran was investigated. A vulnerability map (VM) was created applying hydrogeological parameters derived from the original GALDIT model (OGM).
View Article and Find Full Text PDFThis study presents a comparative analysis of four Machine Learning (ML) models used to map wildfire susceptibility on Hawai'i Island, Hawai'i. Extreme Gradient Boosting (XGBoost) combined with three meta-heuristic algorithms - Whale Optimization (WOA), Black Widow Optimization (BWO), and Butterfly Optimization (BOA) - were employed to map areas susceptible to wildfire. To generate a wildfire inventory, 1408 wildfire points were identified within the study area from 2004 to 2022.
View Article and Find Full Text PDFRecent global outbreak of COVID-19 has raised serious awareness about our abilities to protect ourselves from hazardous pathogens and volatile organic compounds. Evidence suggests that personal protection equipment such as respiratory masks can radically decrease rates of transmission and infections due to contagious pathogens. To increase filtration efficiency without compromising breathability, application of nanofibers in production of respiratory masks have been proposed.
View Article and Find Full Text PDFOne of the most prevalent malignancies, which have severe effects on women's health, is breast cancer. Quercetin, a flavonoid found in vegetables, tea, and fruits, is known to have bioactive properties, such as anti-inflammatory, anti-oxidant, as well as anti-cancer. Long non-coding RNAs (lncRNAs) have been recognized to function as primary regulators of diverse cellular processes, including differentiation, development, and cell fate.
View Article and Find Full Text PDFLandslides are a geological hazard that can pose a serious threat to human health and the environment of highlands or mountain slopes. Landslide susceptibility mapping is an essential tool for predicting and mitigating landslides. This study aimed to investigate the application of deep learning algorithms based on convolutional neural networks (CNNs) with metaheuristic optimization algorithms, namely the grey wolf optimizer (GWO) and imperialist competitive algorithm (ICA), to landslide susceptibility mapping.
View Article and Find Full Text PDFThe adverse health effects associated with the inhalation and ingestion of naturally occurring radon gas produced during the uranium decay chain mean that there is a need to identify high-risk areas. This study detected radon-prone areas using a geographic information system (GIS)-based probabilistic and machine learning methods, including the frequency ratio (FR) model and a convolutional neural network (CNN). Ten influencing factors, namely elevation, slope, the topographic wetness index (TWI), valley depth, fault density, lithology, and the average soil copper (Cu), calcium oxide (Cao), ferric oxide (FeO), and lead (Pb) concentrations, were analyzed.
View Article and Find Full Text PDFWater dominated gullies formation and associated land degradation are the foremost challenges among the planners for sustainability and optimization of land resources. This type of hazardous phenomenon is utmost vulnerable due to huge loss of surface soil in the sub-tropical developing countries like India. The present study has been carried out in rugged badland topography of Garhbeta-I Community Development (C.
View Article and Find Full Text PDFLand subsidence (LS) in arid and semi-arid areas, such as Iran, is a significant threat to sustainable land management. The purpose of this study is to predict the LS distribution by generating land subsidence susceptibility models (LSSMs) for the Shahroud plain in Iran using three different multi-criteria decision making (MCDM) and five different artificial intelligence (AI) models. The MCDM models we used are the VlseKriterijumska Optimizacija IKompromisno Resenje (VIKOR), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Complex Proportional Assessment (COPRAS), and the AI models are the extreme gradient boosting (XGBoost), Cubist, Elasticnet, Bayesian multivariate adaptive regression spline (BMARS) and conditional random forest (Cforest) methods.
View Article and Find Full Text PDFWe introduce novel hybrid ensemble models in gully erosion susceptibility mapping (GESM) through a case study in the Bastam sedimentary plain of Northern Iran. Four new ensemble models including credal decision tree-bagging (CDT-BA), credal decision tree-dagging (CDT-DA), credal decision tree-rotation forest (CDT-RF), and credal decision tree-alternative decision tree (CDT-ADTree) are employed for mapping the gully erosion susceptibility (GES) with the help of 14 predictor factors and 293 gully locations. The relative significance of GECFs in modelling GES is assessed by random forest algorithm.
View Article and Find Full Text PDFLandslides are natural and sometimes quasi-natural hazards that are destructive to natural resources and cause loss of human life every year. Hence, preparing susceptibility maps for landslide monitoring is essential to minimizing their negative effects. The main aim of the current research was to develop landslide susceptibility maps for Icheon Township, South Korea, using hybrid Machin learning and metaheuristic algorithms, that is, the bee algorithm (Bee), the adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), and the grey wolf optimizer (GWO), and to compare their predictive accuracy.
View Article and Find Full Text PDFSeveral areas of Iran are prone to numerous natural hazards. An effective multi-hazard risk reduction requires analysis of the individual hazards and their interplay. This research develops a multi-hazard probability map for three hazards (i.
View Article and Find Full Text PDF