Publications by authors named "Fatemeh Nazly Pirmoradi"

We report a biolistic technology platform for physical delivery of particle formulations of drugs or vaccines using parallel arrays of microchannels, which generate highly collimated jets of particles with high spatial resolution. Our approach allows for effective delivery of therapeutics sequentially or concurrently (in mixture) at a specified target location or treatment area. We show this new platform enables the delivery of a broad range of particles with various densities and sizes into both in vitro and ex vivo skin models.

View Article and Find Full Text PDF

We demonstrate an implantable MEMS drug delivery device to conduct controlled and on-demand, drug transport to human eye tissue. Remotely operated drug delivery to human post-mortem eyes was performed via a MEMS device. The developed curved packaging cover conforms to the eyeball thereby preventing the eye tissue from contacting the actuating membrane.

View Article and Find Full Text PDF

Ultrasound treatment has been shown to enhance the uptake of both hydrophilic and hydrophobic compounds into PC3 and Huvec cell lines using an insonation regimen of a single 10-s burst of high-frequency (4 MHz), moderate intensity (32 W/cm(2)) ultrasound. The purpose of this work was to evaluate the effect of this ultrasound regimen on the cellular accumulation of paclitaxel (PTX) loaded in copolymer micellar of methoxy poly(ethylene glycol)-block-poly(D,L-lactide) (MePEG-b-PDLLA) in both drug-sensitive (MDCKII and MCF-7) and P-glycoprotein (Pgp)-expressing (MDCKII-MDR and NCI-ADR) cell lines. There were no effects of ultrasound on hydrodynamic diameters of micelles and the release of FRET pairs, indicating the integrity of micelles was maintained.

View Article and Find Full Text PDF

We report the development of a magnetically controlled drug delivery device for on-demand drug release to treat chronic diseases. The devices consist of drug-loaded micro-reservoirs (6 mm in diameter and ∼550 μm in depth), sealed by magnetic PDMS (polydimethylsiloxane) membranes (Ø 6 mm × 40 μm) with laser-drilled apertures and actuated by an external magnetic field. We present a detailed analysis of the magnetic actuation forces and provide an estimate of the resulting membrane deflections.

View Article and Find Full Text PDF

We report the development of a magnetically controlled MEMS device capable of on-demand release of defined quantities of an antiproliferative drug, docetaxel (DTX). Controlled release of DTX with a dosage suitable for the treatment of diabetic retinopathy has been achieved for 35 days. The device consists of a drug-loaded microreservoir (Ø6 mm ×∼550 μm), sealed by an elastic magnetic PDMS (polydimethylsiloxane) membrane (Ø6 mm × 40 μm) with a laser-drilled aperture (∼100 × 100 μm(2)).

View Article and Find Full Text PDF

Introduction: We have previously reported enhanced cytotoxic effects of both doxorubicin and antisense oligonucleotides using an optimized ultrasound regime of a single 10s exposure in burst-mode (4 MHz, 32 W/cm(2)(SaTa), 50 ms burst period) in both PC3 (prostate cancer) cells and angiogenic Huvec (human umbilical cord endothelial cells). The objective of this study was to investigate the effect of ultrasound on the cellular uptake of both hydrophilic agents (rhodamine R123, doxorubicin hydrochloride and mannitol) and hydrophobic agents (rhodamine R6G and paclitaxel) using the same 4 MHz ultrasound exposure system.

Methods: PC3 cells and Huvec were incubated with solutions of radioactive or fluorescent compounds for 1h and ultrasound was then applied to cells.

View Article and Find Full Text PDF