Publications by authors named "Fatemeh Mojoudi"

Kombucha Scoby is a colony consisted from bacteria, yeast and cellulosic pellicle which has unique outcomes and performances in variety of fields. Along with antimicrobial and anti-toxicity of kombucha, it can be adapted to develop reactors for removal of heavy metals from waste water. The main objective of this study is to investigate the removal of Ni (II) ions from wastewater by Kombucha as a microorganism by considering the pH, time, temperature, the electrolyte solution, the buffer volume and type.

View Article and Find Full Text PDF

Novel porous nanocomposite (AC/NC/TGO) was successfully synthesized through the composition of activated carbon, nanoclay and graphene oxide as a Pb(II) adsorbent for the treatment of contaminated aqueous environment. The physicochemical properties and morphology of AC/NC/TGO were examined by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption techniques. Results showed Pb(II) adsorption on the AC/NC/TGO was rapid in the first 20 min and reached equilibrium in 40 min.

View Article and Find Full Text PDF

In this research, first graphene oxide (GO) was synthesized using modified Hummers method and thence via a multi-step procedure, surface of GO was decorated with Fe3O4 nanoparticles (GO-Fe3O4). Thereafter, developed nanoparticles were characterized using FTIR, XRD and SEM analyses and their magnetic properties confirmed using VSM analysis. Moreover, performance of the GO-Fe3O4 for the removal and adsorption of Erythrosine dye from the aqueous solution under variable conditions including pH, phosphate buffer solution (PBS), adsorbent content, stirring time, electrolyte concentration, solution content and temperature were examined.

View Article and Find Full Text PDF

In present study, removal of nickel ions (Ni (II)) from synthetic wastewater using Fe3O4 nanoparticles modified by oak shell was investigated. The FTIR analysis of the adsorbent suggested the occurrence of interaction between the carboxyl group on oak shell modified magnetic nanoparticles (OSMMN) surface and Ni (II). Also, the morphology and size of the adsorbent were observed by SEM and TEM.

View Article and Find Full Text PDF