Publications by authors named "Fatemeh Ghezloo"

Deep learning techniques offer improvements in computer-aided diagnosis systems. However, acquiring image domain annotations is challenging due to the knowledge and commitment required of expert pathologists. Pathologists often identify regions in whole slide images with diagnostic relevance rather than examining the entire slide, with a positive correlation between the time spent on these critical image regions and diagnostic accuracy.

View Article and Find Full Text PDF

Recent accelerations in multi-modal applications have been made possible with the plethora of image and text data available online. However, the scarcity of analogous data in the medical field, specifically in histopathology, has halted comparable progress. To enable similar representation learning for histopathology, we turn to YouTube, an untapped resource of videos, offering 1,087 hours of valuable educational histopathology videos from expert clinicians.

View Article and Find Full Text PDF

Although pathologists have their own viewing habits while diagnosing, viewing behaviors leading to the most accurate diagnoses are under-investigated. Digital whole slide imaging has enabled investigators to analyze pathologists' visual interpretation of histopathological features using mouse and viewport tracking techniques. In this study, we provide definitions for basic viewing behavior variables and investigate the association of pathologists' characteristics and viewing behaviors, and how they relate to diagnostic accuracy when interpreting whole slide images.

View Article and Find Full Text PDF

A rapidly increasing rate of melanoma diagnosis has been noted over the past three decades, and nearly 1 in 4 skin biopsies are diagnosed as melanocytic lesions. The gold standard for diagnosis of melanoma is the histopathological examination by a pathologist to analyze biopsy material at both the cellular and structural levels. A pathologist's diagnosis is often subjective and prone to variability, while deep learning image analysis methods may improve and complement current diagnostic and prognostic capabilities.

View Article and Find Full Text PDF

Humans are able to track multiple objects at any given time in their daily activities-for example, we can drive a car while monitoring obstacles, pedestrians, and other vehicles. Several past studies have examined how humans track targets simultaneously and what underlying behavioral and neural mechanisms they use. At the same time, computer-vision researchers have proposed different algorithms to track multiple targets automatically.

View Article and Find Full Text PDF