Background: Paediatric movement disorders such as cerebral palsy often negatively impact walking behaviour. Although clinical gait analysis is usually performed to guide therapy decisions, not all respond positively to their assigned treatment. Identifying these individuals based on their pre-treatment characteristics could guide clinicians towards more appropriate and personalized interventions.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2021
The performance of a classifier in a brain-computer interface (BCI) system is highly dependent on the quality and quantity of training data. Typically, the training data are collected in a laboratory where the users perform tasks in a controlled environment. However, users' attention may be diverted in real-life BCI applications and this may decrease the performance of the classifier.
View Article and Find Full Text PDFObjective: Despite the effective application of deep learning (DL) in brain-computer interface (BCI) systems, the successful execution of this technique, especially for inter-subject classification, in cognitive BCI has not been accomplished yet. In this paper, we propose a framework based on the deep convolutional neural network (CNN) to detect the attentive mental state from single-channel raw electroencephalography (EEG) data.
Approach: We develop an end-to-end deep CNN to decode the attentional information from an EEG time series.
Annu Int Conf IEEE Eng Med Biol Soc
July 2017
Measuring attention from electroencephalogram (EEG) has found applications in the treatment of Attention Deficit Hyperactivity Disorder (ADHD). It is of great interest to understand what features in EEG are most representative of attention. Intensive research has been done in the past and it has been proven that frequency band powers and their ratios are effective features in detecting attention.
View Article and Find Full Text PDF