Publications by authors named "Fatemeh Ahour"

In the present work, nitrogen-doped carbon was synthesized starting from a chitosan/urea mixture and immobilized at the surface of a bare glassy carbon electrode to detect Cd(II) ions using differential pulse-anodic stripping voltammetry method (DP-ASV). The synthesized nitrogen-doped carbon showed a significant potential for determining Cd(II) ions. Doping carbon with nitrogen atoms gives a structure with increased valence band energy, leading to acceleration of the electron transfer by creating an interaction of nitrogen's free electrons with Cd(II), which subsequently increases the peak current value.

View Article and Find Full Text PDF

This work reports the synthesis of nickel ferrite decorated nitrogen and sulfur co-doped graphene quantum dot (NF@N, S:GQD) and its use as an electrode modifier. The developed NF@N, S:GQD modified glassy carbon electrode (NF@N, S:GQD/GCE) was applied to assess isoniazid (INZ) concentration based on its oxidation at the surface of the proposed electrode. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used as appropriate electrochemical techniques to study the electrochemical behavior of INZ and determine it.

View Article and Find Full Text PDF

The aim of this research is to develop an electrochemical sensor based on a conducting polymer, polyaniline, and a cationic polymer, poly(diallyldimethylammonium chloride), reinforced with graphene oxide nanosheets functionalized with acrylic acid. The two-dimensional nature of acrylic acid functionalized graphene oxide nanosheets and clusters made of conductive polymers and acrylic acid functionalized graphene oxide nanosheets were confirmed by microscopic tests. The prepared nanocomposite was deposited on the glassy carbon electrode in order to prepare an electrochemical sensor for the detection of arsenic by cyclic voltammetry and differential pulse voltammetry methods.

View Article and Find Full Text PDF

The electrochemical and photochemical properties of graphene derivatives could be significantly improved by modifications in the chemical structure. Herein, reduced graphene oxide (RGO) was functionalized with L-arginine (L-Arg) by an amidation reaction between the support and amino acid. Deposition of a powerful ligand, L-Arg, on the optically active support generated an effective optical chemosensor for the determination of Cd(II), Co(II), Pb(II), and Cu(II).

View Article and Find Full Text PDF

The ability to directly recognize double-stranded DNA (ds-DNA) is a major challenge in disease diagnosis and gene therapy because DNA is naturally double-stranded. Herein, a novel electrochemical biosensor for the sequence-specific recognition of ds-DNA using a peptide nucleic acid (PNA) probe and graphene oxide (GO) modified pencil graphite electrode is reported and applied for the direct detection of the desired sequence in plasmid samples. For this purpose, GO was assembled onto the pencil graphite electrode surface (GO/PGE) by a simple casting method and applied for PNA probe immobilization (PNA-GO/PGE).

View Article and Find Full Text PDF

A new colorimetric sensor was designed for the screening pH changes in solutions, as well as, detection of some cations. The sensor preparation includes the chemical binding of alizarine red S (ARS) as a sensor of pH and cation to graphene quantum dots (GQD). Loading ARS on GQD led to the formation of water soluble sensor which finally responded to the colorimetric detection of some cations in water.

View Article and Find Full Text PDF

Development of an electrochemical DNA biosensor for direct detection and discrimination of double-stranded plasmid (ds-Pl) without the need for denaturation of the target plasmid sample using a peptide nucleic acid (PNA) oligomer as the probe is described. This goal was achieved by modification of gold electrode with 6-mercapto-1-hexanol following monolayer self-assembly of cysteine conjugated 20-mer PNA oligomer probe, complementary to the HCV core/E1 region, which binds to ds-Pl and forms PNA/ds-Pl structure. The significant variation in differential pulse voltammetric response of methylene blue on the probe modified electrode upon contacting with complementary double-strand plasmid to form PNA/ds-Pl triplex structure is the principle of target plasmid detection.

View Article and Find Full Text PDF