Introduction: Effective monitoring of insect-pests is vital for safeguarding agricultural yields and ensuring food security. Recent advances in computer vision and machine learning have opened up significant possibilities of automated persistent monitoring of insect-pests through reliable detection and counting of insects in setups such as yellow sticky traps. However, this task is fraught with complexities, encompassing challenges such as, laborious dataset annotation, recognizing small insect-pests in low-resolution or distant images, and the intricate variations across insect-pests life stages and species classes.
View Article and Find Full Text PDFDecentralized deep learning algorithms leverage peer-to-peer communication of model parameters and/or gradients over communication graphs among the learning agents with access to their private data sets. The majority of the studies in this area focus on achieving high accuracy, with many at the expense of increased communication overhead among the agents. However, large peer-to-peer communication overhead often becomes a practical challenge, especially in harsh environments such as for an underwater sensor network.
View Article and Find Full Text PDFThe cyber-agricultural system (CAS) represents an overarching framework of agriculture that leverages recent advances in ubiquitous sensing, artificial intelligence, smart actuators, and scalable cyberinfrastructure (CI) in both breeding and production agriculture. We discuss the recent progress and perspective of the three fundamental components of CAS - sensing, modeling, and actuation - and the emerging concept of agricultural digital twins (DTs). We also discuss how scalable CI is becoming a key enabler of smart agriculture.
View Article and Find Full Text PDFUsing a reliable and accurate method to phenotype disease incidence and severity is essential to unravel the complex genetic architecture of disease resistance in plants, and to develop disease resistant cultivars. Genome-wide association studies (GWAS) involve phenotyping large numbers of accessions, and have been used for a myriad of traits. In field studies, genetic accessions are phenotyped across multiple environments and replications, which takes a significant amount of labor and resources.
View Article and Find Full Text PDFIn this paper we propose a new framework-MoViLan (Modular Vision and Language) for execution of visually grounded natural language instructions for day to day indoor household tasks. While several data-driven, end-to-end learning frameworks have been proposed for targeted navigation tasks based on the vision and language modalities, performance on recent benchmark data sets revealed the gap in developing comprehensive techniques for long horizon, compositional tasks (involving manipulation and navigation) with diverse object categories, realistic instructions and visual scenarios with non reversible state changes. We propose a modular approach to deal with the combined navigation and object interaction problem without the need for strictly aligned vision and language training data (e.
View Article and Find Full Text PDF